某省调查乡村交通状况,得到的统计表中列出了任意两村庄间的距离。省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可),并要求铺设的公路总长度为最小。请计算最小的公路总长度。
Input测试输入包含若干测试用例。每个测试用例的第1行给出村庄数目N ( < 100 );随后的N(N-1)/2行对应村庄间的距离,每行给出一对正整数,分别是两个村庄的编号,以及此两村庄间的距离。为简单起见,村庄从1到N编号。
当N为0时,输入结束,该用例不被处理。
Output对每个测试用例,在1行里输出最小的公路总长度。
Sample Input
3 1 2 1 1 3 2 2 3 4 4 1 2 1 1 3 4 1 4 1 2 3 3 2 4 2 3 4 5 0Sample Output
3
5
Huge input, scanf is recommended.
Hint
Hint
题目的大概意思就是找到图中路的最小花费即权值,这个图是连通图,各点之间可以直接或间接的到达
就是prim算法或kruskal算法,不过前者更容易点理解
也就是点结合,依次找能够到达某个点或某些点的最小花费,把更多的点融进来,直到全部都在
推荐一个 图比较清晰http://www.cnblogs.com/biyeymyhjob/archive/2012/07/30/2615542.html
#include<stdio.h>
#include<string.h>
#define N 1000000
int map[110][110];
int prim(int n)
{
int used[110],lowcost[110],i,j,k,min,sum=0;//sum
memset(used,0,sizeof(used));
memset(lowcost,0,sizeof(lowcost));
for(i=1;i<=n;i++)
{
lowcost[i]=map[i][1];
}
for(i=1;i<n;i++)
{
min=N;
for(j=2;j<=n;j++)
{
if(min>lowcost[j] && used[j]==0)
{
min=lowcost[j]; //找到目前的最小花费 最小权值的点
k=j;
}
}
sum+=min;
used[k]=1; //used[k]=0;
for(j=1;j<=n;j++)
{
if(used[j]==0 && lowcost[j]>map[k][j])
lowcost[j]=map[k][j]; //找到 从上个点到下一个点的最小权值,更新权值
}
}
return sum;
}
int main()
{
int n,m,i,j,a,b,c;
while(~scanf("%d",&n),n)
{
for(i=1;i<=n;i++)
{
for(j=1;j<=n;j++)
{
if(i==j)
map[i][j]=0;
else
map[i][j]=N;
}
}
m=n*(n-1)/2;
for(i=0;i<m;i++){
scanf("%d%d%d",&a,&b,&c);
map[a][b]=map[b][a]=c;
}
printf("%d\n",prim(n));
}
return 0;
}