0204隐函数及由参数方程所确定的函数的导数相关变化率-导数与微分

1 隐函数

定义:设有两个非空数集 A , B A,B A,B.对于 ∀ x ∈ A \forall x\in A xA,由二元方程 F ( x , y ) = 0 F(x,y)=0 F(x,y)=0对应唯一的 y ∈ B y\in B yB,称此对应关系是二元方程 F ( X , y ) = 0 F(X,y)=0 F(X,y)=0确定的隐函数。

相应的由 y = f ( x ) y=f(x) y=f(x)确定的对应关系称为显函数。

把一个隐函数化成显函数,叫做隐函数的显化。

例1 : x + y 3 − 1 = 0 隐 函 数 的 显 化 → y = 1 − x 3 x+y^3-1=0\quad隐函数的显化\rightarrow y=\sqrt[3]{1-x} x+y31=0y=31x

2 隐函数求导

利用复合函数求导法则,对方程两边求导。

例2:求 e y + x y − e = 0 e^y+xy-e=0 ey+xye=0所确定的隐函数的导数 d y d x \frac{dy}{dx} dxdy
解 : 等 式 两 边 求 导 , ( e y ) ′ + ( x y ) ′ − ( e ) ′ = 0 e y y ′ + y + x y ′ = 0 y ′ = − y e y + x , e y + x ≠ 0 解:等式两边求导,\\ (e^y)^{'}+(xy)^{'}-(e)^{'}=0 \\ e^yy^{'}+y+xy^{'}=0 \\ y^{'}=-\frac{y}{e^y+x},\quad e^y+x\not=0 ,(ey)+(xy)(e)=0eyy+y+xy=0y=ey+xy,ey+x=0
例3:求由方程 y 5 + 2 y − x − 3 x 7 = 0 y^5+2y-x-3x^7=0 y5+2yx3x7=0所确定的隐函数在 x = 0 处 的 导 数 d y d x ∣ x = 0 x=0处的导数\frac{dy}{dx}|_{x=0} x=0dxdyx=0
解 : 等 式 两 端 对 x 求 导 5 y 4 y ′ + 2 y ′ − 1 − 21 x 6 = 0 y ′ = 1 + 21 x 6 2 + 5 y 4 x = 0 时 , y = 0 带 入 得 d y d x ∣ x = 0 = 1 2 解:等式两端对x求导\\ 5y^4y^{'}+2y^{'}-1-21x^6=0 \\ y^{'}=\frac{1+21x^6}{2+5y^4} \\ x=0时,y=0带入得\\ \frac{dy}{dx}|_{x=0}=\frac{1}{2} x5y4y+2y121x6=0y=2+5y41+21x6x=0y=0dxdyx=0=21
注:求隐函数在某点的导数值时,如果没要求求 y ′ y^{'} y,则可以先带入该点在求导
对 于 例 3 , 5 y 4 y ′ + 2 y ′ − 1 − 21 x 6 = 0 , 带 入 x = 0 , y = 0 得 y ′ ( 0 ) = 1 2 对于例3,5y^4y^{'}+2y^{'}-1-21x^6=0 ,带入x=0,y=0 得 \\ y^{'}(0)=\frac{1}{2} 35y4y+2y121x6=0x=0,y=0y(0)=21
例4:已知椭圆 x 2 16 + y 2 9 = 1 \frac{x^2}{16}+\frac{y^2}{9}=1 16x2+9y2=1.求该椭圆在点 ( 2 , 3 2 3 ) (2,\frac{3}{2}\sqrt{3}) (2,233 )处的切线方程。
解 : 切 线 斜 率 k = y ′ ( x ) , 方 程 两 边 对 x 求 导 x 8 + 2 9 y y ′ = 0 , y ′ = − 9 x 16 y k = y ′ ( 2 ) = − 3 4 切 线 方 程 为 y − 3 2 3 = − 3 4 ( x − 2 ) 即 3 x + 4 y − 8 3 = 0 解:切线斜率k=y^{'}(x) ,方程两边对x求导 \\ \frac{x}{8}+\frac{2}{9}yy^{'}=0,y^{'}=-\frac{9x}{16y} \\ k=y^{'}(2)=-\frac{\sqrt{3}}{4} \\ 切线方程为y-\frac{3}{2}\sqrt{3}=-\frac{\sqrt{3}}{4}(x-2) \\ 即\sqrt{3}x+4y-8\sqrt{3}=0 线k=y(x),x8x+92yy=0,y=16y9xk=y(2)=43 线y233 =43 (x2)3 x+4y83 =0

例5:由方程 x − y + 1 2 sin ⁡ y = 0 x-y+\frac{1}{2}\sin y =0 xy+21siny=0所确定的隐函数,求 d y 2 d x 2 \frac{dy^2}{dx^2} dx2dy2
解 : 方 程 两 边 对 x 求 导 1 − y ′ + 1 2 cos ⁡ y y ′ = 0 , y ′ = 2 2 − cos ⁡ y y ′ ′ = 0 − 2 ( sin ⁡ y y ′ ) ( 2 − cos ⁡ y ) 2 = − 4 sin ⁡ y ( 2 − cos ⁡ y ) 3 解:方程两边对x求导 \\ 1-y^{'}+\frac{1}{2}\cos yy^{'}=0 ,y^{'}=\frac{2}{2-\cos y} \\ y^{''}=\frac{0-2(\sin yy^{'})}{(2-\cos y)^2}=\frac{-4\sin y}{(2-\cos y)^3} \\ x1y+21cosyy=0y=2cosy2y=(2cosy)202(sinyy)=(2cosy)34siny

某些场合,利用对数求导法比通用的方法简便些。

例6:求 y = x sin ⁡ x ( x > 0 ) y=x^{\sin x}(x\gt0) y=xsinx(x>0)的导数。
两 边 取 对 数 , 得 ln ⁡ y = sin ⁡ x ln ⁡ x , 两 边 对 x 求 导 y ′ y = cos ⁡ x ln ⁡ x + sin ⁡ x x y ′ = x sin ⁡ x ( cos ⁡ x ln ⁡ x + sin ⁡ x x ) 两边取对数, 得 \\ \ln y=\sin x \ln x, 两边对x求导 \\ \frac{y^{'}}{y}=\cos x\ln x+\frac{\sin x}{x} \\ y^{'}=x^{\sin x}(\cos x\ln x+\frac{\sin x}{x}) lny=sinxlnx,xyy=cosxlnx+xsinxy=xsinx(cosxlnx+xsinx)
例7:求 y = ( x − 1 ) ( x − 2 ) ( x − 3 ) ( x − 4 ) y=\sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)}} y=(x3)(x4)(x1)(x2) 的导数。
( ln ⁡ ∣ x ∣ ) ′ = 1 x 两 边 取 对 数 , 得 ln ⁡ ∣ y ∣ = ln ⁡ ( x − 1 ) ( x − 2 ) ( x − 3 ) ( x − 4 ) = 1 2 ( ln ⁡ ( x − 1 ) + ln ⁡ ( x − 2 ) − ln ⁡ ( x − 3 ) − ln ⁡ ( x − 4 ) ) 两 边 对 x 求 导 y ′ y = 1 2 ( 1 x − 1 + 1 x − 2 − 1 x − 3 − 1 x − 4 ) y ′ = 1 2 ( x − 1 ) ( x − 2 ) ( x − 3 ) ( x − 4 ) ( 1 x − 1 + 1 x − 2 − 1 x − 3 − 1 x − 4 ) (\ln|x|)^{'}=\frac{1}{x} \\ 两边取对数,得 \\ \ln|y|=\ln\sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)}}=\frac{1}{2}(\ln(x-1)+\ln(x-2)-\ln(x-3)-\ln(x-4)) \\ 两边对x求导 \\ \frac{y^{'}}{y}=\frac{1}{2}(\frac{1}{x-1}+\frac{1}{x-2}-\frac{1}{x-3}-\frac{1}{x-4}) \\ y^{'}=\frac{1}{2}\sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)}}(\frac{1}{x-1}+\frac{1}{x-2}-\frac{1}{x-3}-\frac{1}{x-4}) (lnx)=x1,lny=ln(x3)(x4)(x1)(x2) =21(ln(x1)+ln(x2)ln(x3)ln(x4))xyy=21(x11+x21x31x41)y=21(x3)(x4)(x1)(x2) (x11+x21x31x41)

当求 f ( x ) f(x) f(x)为幂指函数或多项乘、除时,可以两边取对数转化为隐函数求导。

3 由参数方程确定的函数

一般地,若参数方程
{ x = ϕ ( t ) y = ψ ( t ) ( 4 − 3 ) \begin{cases} x=\phi(t) \\ y=\psi(t) \qquad(4-3) \end{cases} {x=ϕ(t)y=ψ(t)(43)
确定y与x直接的函数关系,则称此函数关系所表达的函数为由参数方程(4-3)所确定的函数。

x = ϕ ( t ) , y = ψ ( t ) x=\phi(t),y=\psi(t) x=ϕ(t),y=ψ(t)都可导,且 ϕ ( t ) ′ ≠ 0 \phi(t)^{'}\not=0 ϕ(t)=0 x = ϕ ( t ) 存 在 反 函 数 t = ϕ − 1 ( x ) x=\phi(t)存在反函数t=\phi^{-1}(x) x=ϕ(t)t=ϕ1(x),则

d y d x = ψ ′ ( t ) ϕ ′ ( t ) 或 d y d x = d y d t d x d t \frac{dy}{dx}=\frac{\psi^{'}(t)}{\phi^{'}(t)}或\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}} dxdy=ϕ(t)ψ(t)dxdy=dtdxdtdy

如果此时 x = ϕ ( t ) , y = ψ ( t ) x=\phi(t),y=\psi(t) x=ϕ(t),y=ψ(t)二阶可导,那么由参数方程确定的函数的二阶导数为:

d 2 y d x 2 = d d t ( d y d x ) ⋅ 1 d x d t \frac{d^2y}{dx^2}=\frac{d}{dt}(\frac{dy}{dx})\cdot\frac{1}{\frac{dx}{dt}} dx2d2y=dtd(dxdy)dtdx1

证 明 : t = ϕ − 1 ( x ) , 则 y = ψ ( t ) = ψ [ ϕ − 1 ( x ) ] 根 据 复 合 函 数 求 导 法 则 , 有 d y d x = d y d t ⋅ d t d x = d y d t ⋅ 1 d x d t = ψ ′ ( t ) ϕ ′ ( t ) 证明:t=\phi^{-1}(x),则y=\psi(t)=\psi[\phi^{-1}(x)] \\ 根据复合函数求导法则,有 \\ \frac{dy}{dx}=\frac{dy}{dt}\cdot\frac{dt}{dx}=\frac{dy}{dt}\cdot\frac{1}{\frac{dx}{dt}}=\frac{\psi^{'}(t)}{\phi^{'}(t)} t=ϕ1(x),y=ψ(t)=ψ[ϕ1(x)],dxdy=dtdydxdt=dtdydtdx1=ϕ(t)ψ(t)

例8 已知椭圆的参数方程为
{ x = a cos ⁡ ( t ) y = b sin ⁡ ( t ) \begin{cases} x=a\cos(t) \\ y=b\sin(t) \end{cases} {x=acos(t)y=bsin(t)
求椭圆在 t = π 4 t=\frac{\pi}{4} t=4π相应点处的切线方程。
椭 圆 在 t = π 4 处 坐 标 为 ( 2 a 2 , 2 b 2 ) , 切 线 斜 率 为 d y d x ∣ π 4 = ( b sin ⁡ t ) ′ ( a cos ⁡ t ) ′ = − b a 切 线 方 程 为 y − 2 b 2 = − b a ( x − 2 a 2 ) 化 简 得 b x + a y − 2 a b = 0 椭圆在t=\frac{\pi}{4}处坐标为(\frac{\sqrt{2}a}{2},\frac{\sqrt{2}b}{2}),切线斜率为\\ \frac{dy}{dx}|_{\frac{\pi}{4}}=\frac{(b\sin t)^{'}}{(a\cos t)^{'}}=-\frac{b}{a}\\ 切线方程为y-\frac{\sqrt{2}b}{2}=-\frac{b}{a}(x-\frac{\sqrt{2}a}{2}) 化简得\\ bx+ay-\sqrt{2}ab=0 t=4π(22 a,22 b),线dxdy4π=(acost)(bsint)=ab线y22 b=ab(x22 a)bx+ay2 ab=0

4 相关变化率

x = x ( t ) 及 y = y ( t ) x=x(t)及y=y(t) x=x(t)y=y(t)都可导函数,而变量 x 与 y x与y xy间存在某种关系,从而变化率 d x d t 与 d y d t \frac{dx}{dt}与\frac{dy}{dt} dtdxdtdy间也存在一定的关系。这两个相互依赖的变化率称为相关变化率。

例9 一气球从距离观察员500m处离地面铅直上升,当气球高度为500m时,其速率为140m/min.求此时观察员视线的仰角增加的速率是多少?

如图所示:在这里插入图片描述

观 察 员 仰 角 α 随 时 间 t 变 化 关 系 α ( t ) , 气 球 高 度 h 随 时 间 t 变 化 关 系 h ( t ) 则 tan ⁡ α ( t ) = h ( t ) 500 两 边 对 t 求 导 , 得 sec ⁡ 2 α ( t ) d α ( t ) d t = 1 500 d h ( t ) d t d α ( t ) d t = 1 sec ⁡ 2 α ( t ) 1 500 d h ( t ) d t h ( t ) = 500 时 , sec ⁡ 2 α = 1 + tan ⁡ 2 α = 2 , d h ( t ) d t = 140 m / m i n 带 入 上 述 公 式 d α ( t ) d t = 0.14 r a d / m i n 观察员仰角\alpha随时间t变化关系\alpha(t),气球高度h随时间t变化关系h(t) 则\\ \tan\alpha(t)=\frac{h(t)}{500} \\ 两边对t求导,得\\ \sec^2\alpha(t)\frac{d\alpha(t)}{dt}=\frac{1}{500}\frac{dh(t)}{dt} \\ \frac{d\alpha(t)}{dt}=\frac{1}{\sec^2\alpha(t)}\frac{1}{500}\frac{dh(t)}{dt} \\ h(t)=500时,\sec^2\alpha=1+\tan^2\alpha=2,\frac{dh(t)}{dt}=140m/min 带入上述公式\\ \frac{d\alpha(t)}{dt}=0.14rad/min αtα(t)hth(t)tanα(t)=500h(t)tsec2α(t)dtdα(t)=5001dtdh(t)dtdα(t)=sec2α(t)15001dtdh(t)h(t)=500sec2α=1+tan2α=2,dtdh(t)=140m/mindtdα(t)=0.14rad/min
例10: 落在平静的水面上石头产生同心波纹,若最外圈波纹半径的增大速率为6m/s,问在2s末扰动水面面积增大的速率为多少
设 t 时 刻 最 外 圈 波 纹 的 半 径 为 人 , 面 积 为 A , 则 d r d t = 6 , A = π r 2 , 所 以 d A d t = d A d r ⋅ d r d t = 2 π r ⋅ 6 = 12 π r t = 2 时 , r = 12 m , d A d t = 12 π ⋅ 12 = 144 π m 2 / s 设t时刻最外圈波纹的半径为人,面积为A ,则\\ \frac{dr}{dt}=6 ,A =\pi r^2 ,所以\\ \frac{dA}{dt}=\frac{dA}{dr}\cdot\frac{dr}{dt}=2\pi r\cdot6=12\pi r \\ t=2时,r=12m ,\frac{dA}{dt}=12\pi\cdot12=144\pi\quad m^2/s tAdtdr=6,A=πr2,dtdA=drdAdtdr=2πr6=12πrt=2r=12m,dtdA=12π12=144πm2/s
例11 已知一长方形的长l以2cm/s的速率增加,宽w以3cm/s的速率增加,则当t=12cm,w=5cm时,该长方形的对角线增加的速率是多少?
设 对 角 线 y ( t ) 则 y 2 ( t ) = l 2 ( t ) + w 2 ( t ) 两 边 对 t 求 导 , 得 2 y ( t ) d y ( t ) d t = 2 l ( t ) d l ( t ) d t + 2 w ( t ) d w ( t ) d t d y ( t ) d t = 1 l 2 + w 2 ( l d l d t + w d w d t ) t = 12 , w = 5 带 入 得 d y ( t ) d t = 1 13 ( 12 ⋅ 2 + 5 ⋅ 3 ) = 3 c m / s 设对角线y(t) \\ 则y^2(t)=l^2(t)+w^2(t) \\ 两边对t求导,得 \\ 2y(t)\frac{dy(t)}{dt}=2l(t)\frac{dl(t)}{dt}+2w(t)\frac{dw(t)}{dt}\\ \frac{dy(t)}{dt}=\frac{1}{\sqrt{l^2+w^2}}(l\frac{dl}{dt}+w\frac{dw}{dt}) \\ t=12,w=5带入得 \\ \frac{dy(t)}{dt}=\frac{1}{13}(12\cdot2+5\cdot3)=3cm/s 线y(t)y2(t)=l2(t)+w2(t)t2y(t)dtdy(t)=2l(t)dtdl(t)+2w(t)dtdw(t)dtdy(t)=l2+w2 1(ldtdl+wdtdw)t=12,w=5dtdy(t)=131(122+53)=3cm/s

5 后记

❓QQ:806797785

⭐️文档笔记地址:https://gitee.com/gaogzhen/math

参考:

[1]同济大学数学系.高等数学 第七版 上册[M].北京:高等教育出版社,2014.7.P101~p108.

[2]【梨米特】同济七版《高等数学》全程教学视频|纯干货知识点解析,应该是全网最细|微积分 | 高数[CP/OL].2020-04-16.p16.

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

gaog2zh

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值