微积分(二) 导数与微分

前言

导数反映了函数值相对于自变量的变化快慢程度,而微分则表明当自变量有微小变化时,函数值大体上变化多少

瞬时速度的解决——极限

牛顿采用了一种无限逼近的方法。

平均速度的定义:如果一个物体在一段时间△t内位移了s,它在这段时间内的平均速度是:△s/△t.

由于物体在某一时刻的位移s由时间t决定,因此它是t的函数,可以写成s(t)的形式.如果我们在一个坐标系中用横坐标表示t,纵坐标表示s,那么物体在任意时刻的位移就是一条曲线,如图
在这里插入图片描述

如图,当时间间隔△t逐渐变小时,△s/△t的比值会越来越接近t.点的速度。最后当△t趋近于0时,三角形斜边所在的直线,就是曲线在t.点的切线,它的斜率就是物体在t.点的瞬时速度
V ( t ) = lim ⁡ △ t → 0 △ s / △ t V(t)=\lim\limits_{{△t \to 0}}△s/△t V(t)=t0lims/△t
通过极限的概念,牛顿将平均速度和瞬时速度联系起来了。这一点在认识论上有很重大的意义,它说明宏观整体的规律和微观瞬时的规律之间并非是孤立的,而是有联系的。

当然,如果只是通过极限思想计算出一个时间点的瞬时速度,比起两千多年前阿基米德用割圆术估算圆周率也没有太多进步。牛顿了不起的地方在于,他认识到函数变化的速率,也就是函数曲线上每一个点切线的斜率,本身又是一种新的函数,他称之为流数,就是我们今天所说的导数,原先的函数也因此被称为原函数。

  1. 导数的本质,就是对原函数变化快慢的规律性的描述
  2. 有了导数,人们对函数变化快慢的度量,就从定性估计精确到定量分析了,我们甚至可以准确地度量一个函数在任意一个点的速率变化,也可以对比不同函数的速率变化。

导数

在这里插入图片描述
看看下面两个例子
在这里插入图片描述
例6.求函数 f ( x ) = ∣ x ∣ f(x)=|x| f(x)=x在x=0 处的导数。
在这里插入图片描述
即函数可导性与连续性的关系
在这里插入图片描述

  1. 如果函数在 y = f ( x ) y=f(x) y=f(x)在点 x x x处可导,则函数必在该点连续
  2. 一个函数在某点连续却不一定在该点可导
根据导数定义得初等函数求导公式

在这里插入图片描述

函数的四则运算的求导法则

在这里插入图片描述
对式3为例子证明
在这里插入图片描述
在这里插入图片描述

反函数的求导法则

在这里插入图片描述
简言之,反函数的导数等于直接函数导数的倒数。

复合函数的求导法则

在这里插入图片描述
简言之,如果里层函数在 x 0 x_0 x0点处可导,外层函数在相应的 u 0 u_0 u0 处可导,那么复合函数在 x 0 x_0 x0处可导,且导数是外层函数在 u 0 u_0 u0处的导数值乘以里层函数在 x 0 x_0 x0 处的导数值。
在这里插入图片描述

隐函数的导数

在这里插入图片描述
为什么要讨论隐函数的导数呢?何不先把隐函数显化,然后再求导呢?原因是有时候隐函数显化的过程非常困难,所以不如直接在隐函数的基础上进行求导来的简单。
在这里插入图片描述

y 5 y^5 y5求导,可以看成是一个复合函数的操作

  1. g ( y ) = y 5 g(y)=y^5 g(y)=y5
  2. y = f ( x ) y=f(x) y=f(x)

g ′ ( x ) = g ′ ( y ) f ′ ( x ) = 5 y 4 d y d x g'(x)= g'(y)f'(x) = 5y^4\frac{dy}{dx} g(x)=g(y)f(x)=5y4dxdy

由参数方程所确定的函数的导数

在这里插入图片描述
在这里插入图片描述
有时候很难根据参数方程求出其确定的函数表达式,从而求导函数。所以我们希望可以直接在参数方程的基础上求导,下面我们来讨论如何直接根据参数方程求其确定的函数的导函数。
在这里插入图片描述
在这里插入图片描述

微分:描述微观世界的工具

什么是微分呢?它其实就是在前面有关速度的例子中提到的,当△t趋近于零时,位移量△s的值。对比一般性的函数y=f(x),我们用dx表示自变量趋于零的情况,用dy表示函数的微分。

如果我们对比一下导数的定义和微分的定义,就可以看出它们讲的其实是一回事,因为dy=f’(x)*dx,因此,我们也经常直接把导数写成:f’(x)=dy/dx

如果我们孤立地看微分少,就是无穷小,定义微分这样一个新概念有什么必要呢?

我们用一个具体的例子来说明。假如你是一个工程师,要建造一个巨大的储油噬,无论增大半径还是增加高度,都有相当大的工程难度。而现在建造经费有限,只能在一个维度上增大储油罐的体积,你应该怎么做呢?

我们知道,圆柱体的体积等于圆周率π乘以半径平方再乘以高度,即 V = π r 2 h V=πr^2h V=πr2h.如果要问圆柱体的体积随半径变化快还是随高度变化快.在没有微分这个概念时,一般人根据直觉,会觉得随半径变化快,因为体积和半径之间是平方关系,而随高度变化只是线性关系。

真实情况是什么样呢?我们可以对这两种变化趋势做量化的对比:在半径和高度特定的条件下,看看半径增长一个很小的单位,体积增加多少;再看看高度增加同样的单位,体积增加多少。先来看半径增长对体积的影响。
在这里插入图片描述
所以当储油罐比较"扁平"时,应该增加高度。

微分在近似计算中的应用

在这里插入图片描述
在这里插入图片描述
工程上也会近似公式的方式来估值
在这里插入图片描述

微分中值定理

通过研究函数 f ( x ) f(x) f(x),总结出一定的规则

费马(Fermat)引理

在这里插入图片描述
即最高点斜率为0.

罗尔(Rolle)定理

在这里插入图片描述
即两头相待,中间必为出来斜率为0的

拉格朗日(Lagrange)中值定理

在这里插入图片描述
利用罗尔定理,证明拉格朗日(Lagrange)中值定.
在这里插入图片描述

柯西(Cauchy)中值定理

在这里插入图片描述
证明:略,请参考《第十九讲 微分中值定理

主要参考

第十三讲 导数的概念
第十四讲 函数的求导法则
第十六讲 隐函数和参数方程所确定函数的导数
第十七讲 函数的微分
第十九讲 微分中值定理
微分和导数的关系是什么

内容概要:文章详细探讨了数据连接性和云集成在增强汽车电子电气架构(EEA)方面的重要作用。首先介绍了从分布式到集中式架构的技术演进,解释了域集中式和中央集中式架构的优势,如远程软件升级(OTA)、软硬件解耦等。其次,阐述了云平台在远程软件更新、数据存储分析等方面的支持作用。接着,强调了数据连接性在实时通信、低延迟决策、多模态传感器融合以及工业物联网集成中的核心作用。此外,讨论了云集成在个性化服务、AI助手、自动驾驶训练仿真、预测性维护等方面的应用。最后,分析了市场需求政策支持对这一领域的影响,并展望了未来的发展趋势,如5G-A/6G、边缘计算AI大模型的融合。 适用人群:汽车电子工程师、智能网联汽车行业从业者及相关领域的研究者。 使用场景及目标:①理解汽车电子电气架构从分布式到集中式的演进过程及其带来的优势;②掌握数据连接性和云集成在提升车辆智能化水平的具体应用和技术细节;③了解相关政策法规对智能网联汽车发展的支持规范;④探索未来技术发展趋势及其可能带来的变革。 其他说明:本文不仅提供了技术层面的深入解析,还结合了实际应用案例,如特斯拉、蔚来、中联重科、约翰迪尔等企业的实践成果,有助于读者全面理解数据连接性和云集成在现代汽车工业中的重要地位。同时,文中提及的政策法规也为行业发展指明了方向。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值