基础知识
文章平均质量分 81
看不见我呀
坚持就是胜利
展开
-
MNASNET 概述
MNASNET简介设计mobilent的过程中发现:人类设计的能力有极限。因此,需要找到一个网络,在acc和latency之间平衡。设计loss function,让机器来找到最优的网络结构。 优化目标层级搜索空间Cnn动辄上百层,本文将CNN分为多个block,block中相同的layer重复。Layer的搜索空间:训练Mobilenetv2作为baseline,我们搜索{0,+1,-1}基于mobilenetv2,每层的filter size,提出一个新的CNN,训练,得到ac原创 2022-05-25 15:28:34 · 770 阅读 · 0 评论 -
CRF(4)
谈谈序列标注三大模型HMM、MEMM、CRF | 明天探索者这篇文章更加偏理论一些。从判别模型和生成模型的角度,分析HMM MEMM CRF等。很久之前曾经接触过CRF,但是觉得这东西太晦涩难懂了,看了很多科普博客但很多都是从概率图的层面上解释的,虽然图形能让你很快了解个大概,但是有些地方疑惑时是很难从图形中得到答案的,所以我更喜欢从公式出发。最近重拾CRF,顺便也回顾了HMMMEMM,这几个模型主要用在了序列标注上,故在此形成一个小型知识体系便于以后复习。前情知识生成模型 &.转载 2022-04-21 18:17:08 · 328 阅读 · 0 评论 -
CRF(3)
条件随机场-CRF | LonePatient'Blog最近一段时间在研究NER相关项目,因此,打算对NER一些算法做一定总结,本文主要记录自己在学习CRF模型过程中的一些记录,大部分来自于网上各位大神的博客。什么样的问题需要CRF模型假设你有许多小明同学一天内不同时段的照片,从小明提裤子起床到脱裤子睡觉各个时间段都有(小明是照片控!)。现在的任务是对这些照片进行分类。比如有的照片是吃饭,那就给它打上吃饭的标签;有的照片是跑步时拍的,那就打上跑步的标签;有的照片是开会时拍的,那就打上开会的标签。转载 2022-04-21 17:35:16 · 1247 阅读 · 0 评论 -
CRF(1)
最近整理了一下关于CRF的文章,便于进行理解。关于三者的区别,先给个整体的感觉。HMM、CRF、MEMM区别cnblogs.com/gczr/p/10248232.html隐马尔可夫模型(Hidden Markov Model,HMM),最大熵马尔可夫模型(Maximum Entropy Markov Model,MEMM)以及条件随机场(Conditional Random Field,CRF)是序列标注中最常用也是最基本的三个模型。HMM首先出现,MEMM其次,CRF最后。三个算法主转载 2022-04-21 17:09:30 · 141 阅读 · 0 评论 -
fcn的理解
https://medium.com/nanonets/how-to-do-image-segmentation-using-deep-learning-c673cc5862ef如今,语义分割是计算机视觉领域的关键问题之一。纵观全局,语义分割是为完整场景理解铺平道路的高级任务之一。场景理解作为核心计算机视觉问题的重要性突出表现在越来越多的应用程序通过从图像推断知识而滋养。其中一些应用包括自动驾...转载 2018-11-16 15:31:16 · 6928 阅读 · 0 评论 -
[caffe笔记005]:通过代码理解faster-RCNN中的RPN
https://blog.csdn.net/happyflyy/article/details/54917514[caffe笔记005]:通过代码理解faster-RCNN中的RPN注意:整个RPN完全是笔者自己的理解,可能会有一些理解错误的地方。1. RPN简介RPN是regional proposal networks的缩写,是faster-RCNN结构中的一部分。faster-...转载 2018-11-01 17:43:08 · 489 阅读 · 0 评论 -
rpn训练和r-cnn的训练比较
原创 2018-11-01 17:42:13 · 946 阅读 · 0 评论 -
cnn可视化工具
https://www.leiphone.com/news/201707/TmZfbVdmupizoVcB.html转载 2018-10-30 16:21:23 · 1130 阅读 · 0 评论 -
权重分布
https://stats.stackexchange.com/questions/198762/understanding-weight-distribution-in-neural-network转载 2018-10-30 16:08:09 · 1204 阅读 · 0 评论 -
梯度爆炸和梯度消失——引入的误差越来越多,同时有用信息减少,同时想到的了relay BP
这个将是对于用基于梯度优化方法的死结。https://machinelearningmastery.com/exploding-gradients-in-neural-networks/爆炸梯度是一个问题,其中大的误差梯度累积并导致在训练期间对神经网络模型权重的非常大的更新。这会导致您的模型不稳定,无法从您的训练数据中学习。在这篇文章中,您将发现使用深度人工神经网络爆炸梯度的问题。...转载 2018-10-30 16:02:10 · 975 阅读 · 0 评论 -
权重分布
对于多层网络来说,其权重应该越来越稀疏。作者:小小鱼链接:https://zhuanlan.zhihu.com/p/41631717来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。 在机器学习中,经常需要对模型进行正则化,以降低模型对数据的过拟合程度,那么究竟如何理解正则化的影响?本文尝试从可视化的角度来解释其影响。首先,正则化通常分为三种,都是在...转载 2018-10-30 15:44:55 · 4703 阅读 · 1 评论 -
Tensorboard 直方图Summary使用指南
参考文献:https://www.jianshu.com/p/d059ffea9ec0https://blog.csdn.net/u010099080/article/details/77426577https://zhuanlan.zhihu.com/p/37022051主要内容:如何解读Histogram Dashboard的信息用途当你想查看一个tensor在训练过程的...转载 2018-10-30 15:18:29 · 725 阅读 · 0 评论 -
几篇较新的计算机视觉Self-Attention
https://www.zhihu.com/search?q=Self-Attention&type=content作者:Fisher Yu链接:https://zhuanlan.zhihu.com/p/44031466来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。 Attention注意力,起源于Human visual system(HV...转载 2018-11-09 16:40:59 · 1110 阅读 · 0 评论 -
FPN详解
论文题目:Feature Pyramid Networks for Object Detection论文链接:论文链接论文代码:Caffe版本代码链接一、FPN初探1. 图像金字塔图1 图像金字塔图2 高斯金字塔效果如上图所示,这是一个图像金字塔,做CV的你肯定很熟悉,因为在很多的经典算法里面都有它的身影,比如SIFT、HOG等算法。我们常用的是高斯金字塔,所谓的高斯金...转载 2018-11-08 15:19:17 · 1227 阅读 · 1 评论 -
深度学习——分类之ResNet
https://zhuanlan.zhihu.com/p/32781577论文:Deep Residual Learning for Image Recognition作者:Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian SunImageNet Top5错误率: 3.57%主要思想:Residual,残差,名字就体现了,不学绝对值,而学差...转载 2018-11-08 15:23:39 · 4693 阅读 · 2 评论 -
deconv理解
近期在看fcn,提到a natural way to upsample is therefore backwards convolution (sometimes called deconvolution) with an output stride of f. Such an operation is trivial to implement, since it simply reverse...转载 2018-11-16 10:07:08 · 7293 阅读 · 1 评论 -
目标检测之focal loss
https://blog.csdn.net/dreamer_on_air/article/details/78187565我的批注:作者没有考虑负样本的情况,当正样本被预测正确时,其loss下降为0;当正样本预测错误时,其loss有稍微的下降;也就是,对于容易训练的样本,其loss赶紧下降;对于不好训练的样本,采用loss好好抓一下特征。 Focal Loss for ...转载 2018-12-26 14:38:36 · 1349 阅读 · 0 评论 -
SSD 算法详解 及其 keras 实现(上)
https://blog.csdn.net/remanented/article/details/79943418(看原文吧,我就不进行截图了)看了几天的SSD的论文和keras实现的代码,对SSD也有了一定的理解,把这几天的学习成果记录下来。可能是因为之前学习了Mask R-CNN 和 YOLOV1、V2,所以SSD一路看下来还是蛮顺利的。SSD:Single Shot Multib...转载 2018-12-27 16:00:35 · 2651 阅读 · 0 评论 -
关于 global average pooling
Golbal Average Pooling 第一次出现在论文Network in Network中,后来又很多工作延续使用了GAP,实验证明:Global Average Pooling确实可以提高CNN效果。Fully Connected layer很长一段时间以来,全连接网络一直是CNN分类网络的标配结构。一般在全连接后会有激活函数来做分类,假设这个激活函数是一个多分类softmax...转载 2018-12-26 11:48:58 · 971 阅读 · 0 评论 -
相机的那些事儿 (一)概念
https://zhuanlan.zhihu.com/p/23089791转载 2019-02-15 18:14:46 · 201 阅读 · 2 评论 -
相机的那些事儿 (二)成像模型
https://zhuanlan.zhihu.com/p/23090593 其实相机的矫正位于:世界坐标转化为相机坐标,然后进行齐次化(投影),然后畸变矫正,然后在进行投影变换转为为像平面,然后转化为像素平面。所以矫正应该位于:相机与世界 投影关系之间。 ...转载 2019-02-15 18:17:46 · 370 阅读 · 0 评论 -
世界坐标系、相机坐标系、图像坐标系之间的关系
https://www.cnblogs.com/gary-guo/p/6553155.html转载 2019-02-15 18:22:24 · 529 阅读 · 0 评论 -
tensorbord使用
https://www.jianshu.com/p/d059ffea9ec0 什么是 TensorBoardTensorBoard 是 TensorFlow 上一个非常酷的功能,我们都知道神经网络很多时候就像是个黑盒子,里面到底是什么样,是什么样的结构,是怎么训练的,可能很难搞清楚,而 TensorBoard 的作用就是可以把复杂的神经网络训练过程给可视化,可以更好地理解,调试并优化程...转载 2018-10-30 14:55:13 · 1257 阅读 · 0 评论 -
anchor理解
faster rcnn中rpn的anchor,sliding windows,proposals?作者:马塔链接:https://www.zhihu.com/question/42205480/answer/155759667来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。 最近也在看这部分内容,将自己的理解和大家分享一下,希望有所帮助。首先我们需...转载 2018-10-31 16:19:53 · 1857 阅读 · 0 评论 -
关于 single crop evaluation 的疑问
关于 single crop evaluation 的疑问之前看到crop的时候,都是理解成对于一个大尺寸的图片,随机剪裁成 crop_size 大小的图片。然而这个 crop evaluated 是什么意思就不懂了。 图来自 inception v3 那个论文。 求大大们解释一下,或者是给出 来源出处,十分感谢~~~~2016-05-12 添加评论分享1 个回复...转载 2018-10-29 17:13:49 · 866 阅读 · 0 评论 -
回归问题的评价测度
https://blog.csdn.net/jasonding1354/article/details/46340729对于分类问题,评价测度是准确率,但这种方法不适用于回归问题。我们使用针对连续数值的评价测度(evaluation metrics)。下面介绍三种常用的针对回归问题的评价测度In [21]:# define true and predicted response ...转载 2018-08-30 18:36:32 · 938 阅读 · 0 评论 -
NMS
http://blog.csdn.net/shuzfan/article/details/50371990本文介绍了用卷积神经网络改进传统NMS的方法,文章来源于2016ICLR《A CONVNET FOR NON-MAXIMUM SUPPRESSION》,该文章状态为正在审核。1-传统的NMS2-NMS-ConvNet2-1 映射制作score转载 2018-01-25 18:40:33 · 1526 阅读 · 0 评论 -
人脸检测——CascadeCNN
http://blog.csdn.net/shuzfan/article/details/50358809本文介绍的人脸检测方法,来源于2015CVPR《A Convolutional Neural Network Cascade for Face Detection》。本篇文章的方法可以说是对经典的Viola jones方法的深度卷积网络实现,并没有让人眼前一亮的地方,但依然有以下几转载 2018-01-25 18:31:27 · 3127 阅读 · 0 评论 -
resnext
http://blog.csdn.net/u014380165/article/details/71667916论文:Aggregated Residual Transformations for Deep Neural Networks论文链接:https://arxiv.org/abs/1611.05431这是一篇发表在2017CVPR上的论文,介绍了R转载 2018-01-25 17:48:44 · 358 阅读 · 0 评论 -
反卷积(转置卷积)总结
http://blog.csdn.net/qq_16949707/article/details/716990751 反卷积就是卷积,只是中间padding了下,然后再做卷积。 这里有个动态图,transposed就是代表反卷积(转置卷积) https://github.com/vdumoulin/conv_arithmetic 算法实现上也是先padding然后卷积 2 数学转载 2018-01-25 17:54:58 · 476 阅读 · 0 评论 -
反卷积 和 转置卷积
http://blog.csdn.net/fate_fjh/article/details/528821341.前言 传统的CNN网络只能给出图像的LABLE,但是在很多情况下需要对识别的物体进行分割实现end to end,然后FCN出现了,给物体分割提供了一个非常重要的解决思路,其核心就是卷积与反卷积,所以这里就详细解释卷积与反卷积。 对于1维的卷积,公式转载 2018-01-25 17:04:04 · 4635 阅读 · 0 评论 -
引导滤波
http://blog.csdn.net/LG1259156776/article/details/518158251,定义引导滤波:即需要引导图的滤波器,引导图可以是单独的图像或者是输入图像,当引导图为输入图像时,引导滤波就成为一个保持边缘的滤波操作,可以用于图像重建的滤波。引导滤波的流程见下图:假设输入图像为p,输出图像为q,引导图为I,转载 2018-01-23 17:27:15 · 5975 阅读 · 1 评论 -
双边滤波
http://blog.csdn.net/abcjennifer/article/details/7616663双边滤波器是什么?双边滤波(Bilateral filter)是一种可以保边去噪的滤波器。之所以可以达到此去噪效果,是因为滤波器是由两个函数构成。一个函数是由几何空间距离决定滤波器系数。另一个由像素差值决定滤波器系数。可以与其相比较的两个filter:高斯低通滤波器(转载 2018-01-23 17:06:20 · 6323 阅读 · 0 评论 -
SVM和SoftMax的原理区别对比
http://blog.csdn.net/u011534057/article/details/51451958出处:http://blog.csdn.net/han_xiaoyang/article/details/49999583声明:版权所有,转载请注明出处,谢谢。1. 线性分类器在深度学习与计算机视觉系列(2)我们提到了图像识别的问题,同时提出了转载 2017-12-25 14:11:39 · 343 阅读 · 0 评论 -
OneHot编码知识点
https://blog.csdn.net/tengyuan93/article/details/78930285两个多月没有更新博客了,一直忙于天池某个比赛和开题方面的事宜,现在重新抓起,更新博客,希望能整理+思考得出些有营养的东西,也算是自己的笔记方便以后查阅。如果有错误,请回复指出,谢谢!定性特征转换为定量特征定性特征,表示某个数据点属于某一个类别,或具有某一种类的特性。 ...转载 2018-08-27 22:55:38 · 716 阅读 · 0 评论 -
统计分析:偏度和峰度
https://blog.csdn.net/baidu_28858149/article/details/50553414偏度偏度(Skewness): 是对Sample构成的分布的对称性状况的描述。计算时间序列 xx 的偏度,偏度用于衡量 xx 的对称性。若偏度为负,则 xx 均值左侧的离散度比右侧强;若偏度为正,则 xx均值左侧的离散度比右侧弱。对于正态分布(或严格对称分布)偏度等...转载 2018-08-29 14:41:46 · 26406 阅读 · 0 评论 -
pandas基本应用
虽然是英文,但是还是简单的,读起来比较顺畅https://www.dataquest.io/blog/pandas-tutorial-python-2/原创 2018-08-29 15:55:42 · 325 阅读 · 0 评论 -
解读Squeeze-and-Excitation Networks(SENet)
https://zhuanlan.zhihu.com/p/32702350Squeeze-and-Excitation Networks(SENet)是由自动驾驶公司Momenta在2017年公布的一种全新的图像识别结构,它通过对特征通道间的相关性进行建模,把重要的特征进行强化来提升准确率。这个结构是2017 ILSVR竞赛的冠军,top5的错误率达到了2.251%,比2016年的第一名还要低...转载 2018-10-09 15:12:28 · 3389 阅读 · 0 评论 -
TensorFlow入门(五)多层 LSTM 通俗易懂版
https://blog.csdn.net/Jerr__y/article/details/61195257@author: huangyongye@creat_date: 2017-03-09前言: 根据我本人学习 TensorFlow 实现 LSTM 的经历,发现网上虽然也有不少教程,其中很多都是根据官方给出的例子,用多层 LSTM 来实现 PTBModel 语言模型,比如:ten...转载 2018-10-11 10:19:26 · 3578 阅读 · 1 评论 -
LSTM入门学习——本质上就是比RNN的隐藏层公式稍微复杂了一点点而已
https://www.cnblogs.com/bonelee/p/7714843.htmlLSTM入门学习摘自:http://blog.csdn.net/hjimce/article/details/51234311下面先给出LSTM的网络结构图:看到网络结构图好像很复杂的样子,其实不然,LSTM的网络结构图无非是为了显示其高大上而已,这其实也是一个稍微比RNN难那么一丁点的...转载 2018-10-11 10:15:55 · 3573 阅读 · 0 评论