题目:
给出 R 行 C 列的矩阵,其中的单元格的整数坐标为 (r, c),满足 0 <= r < R 且 0 <= c < C。
另外,我们在该矩阵中给出了一个坐标为 (r0, c0) 的单元格。
返回矩阵中的所有单元格的坐标,并按到 (r0, c0) 的距离从最小到最大的顺序排,其中,两单元格(r1, c1) 和 (r2, c2) 之间的距离是曼哈顿距离,|r1 - r2| + |c1 - c2|。(你可以按任何满足此条件的顺序返回答案。)
示例
- 示例 1
输入:R = 1, C = 2, r0 = 0, c0 = 0
输出:[[0,0],[0,1]]
解释:从 (r0, c0) 到其他单元格的距离为:[0,1]
- 示例 2
输入:R = 2, C = 2, r0 = 0, c0 = 1
输出:[[0,1],[0,0],[1,1],[1,0]]
解释:从 (r0, c0) 到其他单元格的距离为:[0,1,1,2]
[[0,1],[1,1],[0,0],[1,0]] 也会被视作正确答案。
- 示例 3
输入:R = 2, C = 3, r0 = 1, c0 = 2
输出:[[1,2],[0,2],[1,1],[0,1],[1,0],[0,0]]
解释:从 (r0, c0) 到其他单元格的距离为:[0,1,1,2,2,3]
其他满足题目要求的答案也会被视为正确,例如 [[1,2],[1,1],[0,2],[1,0],[0,1],[0,0]]。
提示:
- 1 <= R <= 100
- 1 <= C <= 100
- 0 <= r0 < R
- 0 <= c0 < C
抛砖引玉
不考虑其他因素,直接将所有的矩阵坐标存放到数组中,然后根据"曼哈顿距离"排序
/**
* @param {number} R
* @param {number} C
* @param {number} r0
* @param {number} c0
* @return {number[][]}
*/
var allCellsDistOrder = function(R, C, r0, c0) {
let _result = [];
for (let i = 0; i < R; i++) {
for (let j = 0; j < C; j++) {
_result[_result.length] = [i, j]
}
}
return _result.sort((a, b) =>
(Math.abs(a[0] - r0) + Math.abs(a[1] - c0)) -
(Math.abs(b[0] - r0) + Math.abs(b[1] - c0))
)
}
记录距离+扁平化嵌套数组
从(r0,c0)向四周扩散
2 | 1 | 2 | 3 |
---|---|---|---|
1 | x | 1 | 2 |
2 | 1 | 2 | 3 |
3 | 2 | 3 | 4 |
从上面可看出,到(r0,c0)的距离是递增的而且每个距离都要多个元素,则:
- 声明一个数组,距离做数组所有存放到个满足该距离的坐标
- 使用Array.prototype.flat将该二维数组扁平化然后返回
/**
* @param {number} R
* @param {number} C
* @param {number} r0
* @param {number} c0
* @return {number[][]}
*/
var allCellsDistOrder = function(R, C, r0, c0) {
let _result = []
for (let i = 0; i < R; i++) {
for (let j = 0; j < C; j++) {
const val = Math.abs(i - r0) + Math.abs(j - c0)
if (_result[val]) {
_result[val].push([i, j])
} else {
_result[val] = [[i, j]]
}
}
}
return _result.flat()
}
博客: 前端小书童
每天的每日一题,写的题解会同步更新到公众号一天一大 lee 栏目
欢迎关注留言