【深度学习基础模型】前馈神经网络(Feed Forward Neural Networks, FFNN)详细理解并附实现代码。

【深度学习基础模型】前馈神经网络(Feed Forward Neural Networks, FFNN)

【深度学习基础模型】前馈神经网络(Feed Forward Neural Networks, FFNN)



参考地址:https://www.asimovinstitute.org/neural-network-zoo/
论文地址:https://www.ling.upenn.edu/courses/cogs501/Rosenblatt1958.pdf

1.算法原理介绍

1.1 前馈神经网络(Feed Forward Neural Networks, FFNN)

前馈神经网络是最基本的神经网络结构之一,其主要特征是信息从输入层经过若干个隐藏层,最终传递到输出层,每一层中的神经元仅与相邻层的神经元相连,信息不会反馈。FFNN的结构简单但功能强大,特别适合进行回归和分类任务。

工作原理:

  • 层次结构:前馈神经网络一般包括三
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

985小水博一枚呀

祝各位老板前程似锦!财源滚滚!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值