【基础模型】First Links in the Markov Chain
【基础模型】First Links in the Markov Chain
文章目录
1. 马尔可夫链 (Markov Chains, MC) 的原理与应用
1.1 马尔可夫链原理
马尔可夫链(Markov Chain, MC)是一种随机过程,其中系统的未来状态仅依赖于当前状态,而与过去的状态无关,这被称为马尔可夫性质。具体而言,马尔可夫链可以描述为在一组状态之间的转移,每个状态的转移概率仅与当前状态有关。
1.2 主要特征:
- 无记忆性:下一个状态仅与当前状态有关,而与如何到达当前状态无关。
- 转移概率:马尔可夫链通过转移矩阵描述从一个状态到另一个状态的概率,这些概率值必须满足非负性和归一性。
- 状态空间:可以是离散的或连续的,通常马尔可夫链是在有限状态空间中定义的。