【基础模型】马尔可夫链 (Markov Chains, MC) 详细理解并附实现代码。

【基础模型】First Links in the Markov Chain

【基础模型】First Links in the Markov Chain



1. 马尔可夫链 (Markov Chains, MC) 的原理与应用

1.1 马尔可夫链原理

马尔可夫链(Markov Chain, MC)是一种随机过程,其中系统的未来状态仅依赖于当前状态,而与过去的状态无关,这被称为马尔可夫性质。具体而言,马尔可夫链可以描述为在一组状态之间的转移,每个状态的转移概率仅与当前状态有关。

1.2 主要特征:

  • 无记忆性:下一个状态仅与当前状态有关,而与如何到达当前状态无关。
  • 转移概率:马尔可夫链通过转移矩阵描述从一个状态到另一个状态的概率,这些概率值必须满足非负性和归一性。
  • 状态空间:可以是离散的或连续的,通常马尔可夫链是在有限状态空间中定义的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

985小水博一枚呀

祝各位老板前程似锦!财源滚滚!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值