深度学习-物体检测概览

本文介绍了物体检测任务,包括边界框回归和类别预测,并详细讨论了物体检测的评价指标,如Top1%和Top5%正确率、Mean Average Precision (MAP)和FPS。接着,深入探讨了YOLO和SSD两种基于回归的物体检测方案,以及R-CNN、Fast R-CNN和Faster R-CNN等基于分类的方案,强调了RoI Pooling的作用。此外,还提到了物体检测中的关键概念,如IOU、非极大值抑制(NMS)和Anchor Boxes。最后,总结了物体检测中遇到的问题及其解决方案,如尺度问题和位置敏感性问题。
摘要由CSDN通过智能技术生成

1 物体检测任务

输入:图像

输出:

Bounding Box(回归任务):矩形边界框框出物体位置

物体类别(分类任务):判断矩形框内的物体类别

2 物体检测评测指标

2.1 Top1%和Top5%正确率

参考:https://stats.stackexchange.com/questions/156471/imagenet-what-is-top-1-and-top-5-error-rate

参考:ImageNet 中的Top-1与Top-5 https://blog.csdn.net/v1_vivian/article/details/73251187

2.2 MAP

参考:https://blog.csdn.net/qq_29462849/article/details/81053038

参考:https://medium.com/@jonathan_hui/map-mean-average-precision-for-object-detection-45c121a31173

参考:https://github.com/Cartucho/mAP

参考:目标检测模型中的性能评估——MAP(Mean Average Precision)

https://blog.csdn.net/katherine_hsr/article/details/79266880

2.3 FPS

Frame per second

参考:https://en.wikipedia.org/wiki/Frame_rate

3 物体检测方案

3.1 基于回归的方案

  • YOLO模型

整体流程:

具体模型:

训练的损失函数:

几个额外参数的目的

 

几个注意点:

(1) 阈值threshold: 

(2) 坐标为相对grid cell和image的相对值,每个grid cell会预测B个bounding box

(3) 置信度

Label某些量是在训练时计算出来的。 

训练时,置信度的ground-truth。注意IOU是输出训练样本输出的时候

才能计算出来的,而不是提前label出的

测试时,又乘了个类别概率P(C),阈值设置参考(1)

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值