1 物体检测任务
输入:图像
输出:
Bounding Box(回归任务):矩形边界框框出物体位置
物体类别(分类任务):判断矩形框内的物体类别
2 物体检测评测指标
2.1 Top1%和Top5%正确率
参考:https://stats.stackexchange.com/questions/156471/imagenet-what-is-top-1-and-top-5-error-rate
参考:ImageNet 中的Top-1与Top-5 https://blog.csdn.net/v1_vivian/article/details/73251187
2.2 MAP
参考:https://blog.csdn.net/qq_29462849/article/details/81053038
参考:https://medium.com/@jonathan_hui/map-mean-average-precision-for-object-detection-45c121a31173
参考:https://github.com/Cartucho/mAP
参考:目标检测模型中的性能评估——MAP(Mean Average Precision)
https://blog.csdn.net/katherine_hsr/article/details/79266880
2.3 FPS
Frame per second
参考:https://en.wikipedia.org/wiki/Frame_rate
3 物体检测方案
3.1 基于回归的方案
- YOLO模型
整体流程:
具体模型:
训练的损失函数:
几个额外参数的目的
几个注意点:
(1) 阈值threshold:
(2) 坐标为相对grid cell和image的相对值,每个grid cell会预测B个bounding box
(3) 置信度
Label某些量是在训练时计算出来的。
训练时,置信度的ground-truth。注意IOU是输出训练样本输出的时候
才能计算出来的,而不是提前label出的
测试时,又乘了个类别概率P(C),阈值设置参考(1)