寻找目标元素

最小的K个数

要求:时间复杂度:O(nlogk),空间复杂度:O(1)

在这里插入图片描述

方法1: 冒泡排序

时间复杂度:O(nk),空间复杂度:O(1)

原理: 利用冒泡排序一趟排序可以使一个元素归位的性质,排序K趟,即可得到最小的K个数。

function GetLeastNumbers_Solution(input, k) {
    const res = [];
    if (k > input.length) return input;
    for (let i = 0; i < k; i++) {
        for (let j = 0; j < input.length; j++) {
            if (input[j] < input[j + 1]) {
                [input[j], input[j + 1]] = [input[j + 1], input[j]];
            }
        }
        res.push(input[input.length - i - 1]);
    }
    return res;
}

方法2: 堆排

时间复杂度:O(nlogk), 插入容量为k的大根堆时间复杂度为O(logk), 一共遍历n个元素
空间复杂度:O(k)

原理:建立一个容量为k的大根堆的优先队列。遍历一遍元素,如果队列大小 < k, 就直接入队,否则,让当前元素与队顶元素相比,如果队顶元素大,则出队,将当前元素入队。

function GetLeastNumbers_Solution(input, k) {
    const queue = [],
        res = [];
    if (k === 0 || k > input.length) return res;
    for (let i = 0; i < input.length; i++) {
        if (queue.length < k) {
            // 构建大顶堆
            queue.push(input[i]);
            buildMaxHeap(queue);
        } else {
            if (input[i] < queue[0]) {
                queue.shift();
                queue.push(input[i]);
                buildMaxHeap(queue);
            }
        }
    }
    while (queue.length) {
        res.push(queue[0]);
        queue.shift();
    }
    // 用例需要
    res.sort();
    return res;
}
function buildMaxHeap(arr) {
    // 从最底部开始
    for (let i = Math.floor(arr.length / 2); i >= 0; i--) {
        heapify(arr, i, arr.length);
    }
}

// 调整的节点的下标i, arr无序的长度len
function heapify(arr, i, len) {
    let left = 2 * i + 1;
    let right = 2 * (i + 1);
    let largest = i;
    if (left < len && arr[left] > arr[largest]) {
        largest = left;
    }
    if (right < len && arr[right] > arr[largest]) {
        largest = right;
    }
    if (largest !== i) {
        change(arr, i, largest);
        heapify(arr, largest, len);
    }
}

function change(arr, i, j) {
    let temp = arr[i];
    arr[i] = arr[j];
    arr[j] = temp;
}

方法3: 快排思想

时间复杂度:平均时间复杂度为O(n), 每次partition的大小为n + n / 2 + n / 4 +… = 2n, 最坏时间复杂度为O(n ^ 2), 因为每次partition都只减少一个元素
空间复杂度:O(1)

原理: 对数组[l, r]一次快排partition过程可得到,[l, p), p, [p + 1, r) 三个区间, [l, p) 为小于等于p的值
[p + 1, r) 为大于等于p的值。
然后再判断p,利用二分法

1. 如果[l, p), p,也就是p + 1个元素(因为下标从0开始),如果p + 1 == k, 找到答案
2. 如果p + 1 < k, 说明答案在[p + 1, r) 区间内,
3. 如果p + 1 > k, 说明答案在[l, p) 内

function GetLeastNumbers_Solution(input, k) {
    const res = [];
    if (k === 0 || k > input.length) return res;
    let l = 0, r = input.length;
    while (l < r) {
        let p = partition(input, l, r);
        if (p + 1 === k) {
            return input.slice(0, k);
        }
        if (p + 1 < k) {
            l = p + 1;
        } else {
            r = p;
        }
    }
    return res;
}
function partition(input, l, r) {
    let pivot = input[r - 1];
    let i = l;
    for (let j = l; j < r - 1; ++j) {
        if (input[j] < pivot) {
            [input[i], input[j]] = [input[j], input[i]];
            i++;
        }
    }
    [input[i], input[r - 1]] = [input[r - 1], input[i]];
    return i;
}

寻找第K大

在这里插入图片描述
利用最小的K个数的方法三和方法二的原理,利用堆和快排算法去处理。

// 快排分治+二分法
function findKth(a, n, K) {
    let l = 0,
        r = n;
    let targetIndex = n - K;
    while (l < r) {
        let p = partition(a, l, r);
        if (p === targetIndex) {
            return a[targetIndex];
        }
        if (p < targetIndex) {
            l = p + 1;
        } else {
            r = p;
        }
    }
}

数据流中的中位数

在这里插入图片描述

排序

排序之后计算中位数的方法不再赘述,可以参考几种排序方法实现。

在这介绍插入排序的方法

Insert()操作可改为插入排序
GetMedian()操作可直接从有序数组中获取中位数

时间复杂度:Insert()为O(n),即二分查找的O(logn)和挪动数据的O(n), GetMedian()为O(1)
空间复杂度:O(n)

时间复杂度:Insert()为O(logn), GetMedian()为O(1)
空间复杂度:O(n)

中位数是指:有序数组中中间的那个数。则根据中位数可以把数组分为如下三段:
[0 … median - 1], [median], [median … arr.size() - 1],即[中位数的左边,中位数,中位数的右边]

那么,如果我有个数据结构保留[0…median-1]的数据,并且可以O(1)时间取出最大值,即arr[0…median-1]中的最大值
相对应的,如果我有个数据结构可以保留[median + 1 … arr.size() - 1] 的数据, 并且可以O(1)时间取出最小值,即
arr[median + 1 … arr.size() - 1] 中的最小值。
然后,我们把[median]即中位数,随便放到哪个都可以。

假设[0 … median - 1]的长度为l_len, [median + 1 … arr.sise() - 1]的长度为 r_len.
1.如果l_len == r_len + 1, 说明,中位数是左边数据结构的最大值
2.如果l_len + 1 == r_len, 说明,中位数是右边数据结构的最小值
3.如果l_len == r_len, 说明,中位数是左边数据结构的最大值与右边数据结构的最小值的平均值。

一个数据结构可以O(1)返回最小值的,其实就是小根堆,O(1)返回最大值的,其实就是大根堆。并且每次插入到堆中的时间复杂度为O(logn)

所以,GetMedian()操作算法过程为:

初始化一个大根堆,存中位数左边的数据,一个小根堆,存中位数右边的数据
动态维护两个数据结构的大小,即最多只相差一个。

const min_lq = [],
    max_rq = [];
function Insert(num) {
    // 加入左大顶堆
    min_lq.push(num);
    buildMaxHeap(min_lq);

    // 分配到右小顶堆
    max_rq.push(min_lq[0]);
    buildMinHeap(max_rq);
    min_lq.shift();
    buildMaxHeap(min_lq);

    if (min_lq.length < max_rq.length) {
        min_lq.push(max_rq[0]);
        buildMaxHeap(min_lq);
        max_rq.shift();
        buildMinHeap(max_rq);
    }
}
function GetMedian() {
    return min_lq.length > max_rq.length
        ? min_lq[0]
        : parseFloat((min_lq[0] + max_rq[0]) / 2);
}
function buildMaxHeap(arr) {
    // 从最底部开始
    for (let i = Math.floor(arr.length / 2); i >= 0; i--) {
        heapify(arr, i, arr.length);
    }
}

// 调整的节点的下标i, arr无序的长度len
function heapify(arr, i, len) {
    let left = 2 * i + 1;
    let right = 2 * (i + 1);
    let largest = i;
    if (left < len && arr[left] > arr[largest]) {
        largest = left;
    }
    if (right < len && arr[right] > arr[largest]) {
        largest = right;
    }
    if (largest !== i) {
        change(arr, i, largest);
        heapify(arr, largest, len);
    }
}

function change(arr, i, j) {
    let temp = arr[i];
    arr[i] = arr[j];
    arr[j] = temp;
}

function buildMinHeap(arr) {
    // 从最底部开始
    for (let i = Math.floor(arr.length / 2); i >= 0; i--) {
        heapifyMin(arr, i, arr.length);
    }
}

function heapifyMin(arr, i, len) {
    let left = 2 * i + 1;
    let right = 2 * (i + 1);
    let mini = i;
    if (left < len && arr[left] < arr[mini]) {
        mini = left;
    }
    if (right < len && arr[right] < arr[mini]) {
        mini = right;
    }
    if (mini !== i) {
        change(arr, i, mini);
        heapifyMin(arr, mini, len);
    }
}
module.exports = {
    Insert: Insert,
    GetMedian: GetMedian,
};

  • 12
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
C中的`priority_queue`一个优先队列容器,它按照一定的优先级排序元素。但是,`priority_queue`并没有供直接查找元素的功能。它的主要操作是插入和删除操作。 如果你想查找特定元素在`priority_queue`中的位置,可以考虑使用其他容器(如`vector`)来保存元素,并根据需要进行查找操作。你可以通过以下步骤来实现: 1. 创建一个额外的`vector`容器,并将`priority_queue`中的元素复制到该容器中。 2. 使用标准库算法`std::find`或者自己实现遍历操作,在`vector`容器中查找目标元素。 3. 如果找到了目标元素,可以根据需要执行相应的操作。 以下是一个简单示例演示如何在`priority_queue`中查找元素: ```cpp #include <iostream> #include <queue> #include <vector> #include <algorithm> int main() { std::priority_queue<int> pq; pq.push(3); pq.push(1); pq.push(2); std::vector<int> vec; while (!pq.empty()) { vec.push_back(pq.top()); pq.pop(); } // 在 vector 中查找元素 int target = 2; auto it = std::find(vec.begin(), vec.end(), target); if (it != vec.end()) { std::cout << "找到了目标元素 " << target << std::endl; // 根据需要执行操作 } else { std::cout << "未找到目标元素 " << target << std::endl; } return 0; } ``` 注意,这种方法的时间复杂度较高,为O(n),其中n为`priority_queue`中的元素数量。如果需要频繁查找元素,可能需要考虑其他数据结构来优化查找操作的效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值