随着公司日益增长的业务,日志增长较快,各种bug层出不穷。为了快速定位问题以及做告警/数据分析等问题,就针对性的查看/搭建了几种日志服务系统。
可能整理的不是那么正确或者详尽。但也记录一下,方便日后回顾时补充或者参考。
对于整个日志服务的规划大概如下:
不同日志服务框架对比
阿里系
其他
编号
(一)Logtail
(二)Appender
(三)ELK
(四)Hadoop
(五)Splunk
费用
1
费用
按量收费
按量收费
开源
开源
商业版
日志接入方式
2
服务端
安装logtail服务端,配置采集源
无
logstash
—
Splunk服务端
3
客户端
安装logtail客户端
替换log4j并配置
logstash-forwarder
—
Splunk客户端
4
搭建难度
按照教程配置
简单
开源相关软件全部安装
开源相关软件全部安装
官网下载后破解
5
分布式支持
支持
–
支持
支持
支持
数据范围
6
数据范围
增量数据
增量数据
全量数据
全量数据
全量数据
数据采集
7
方式
目标机器 -> 服务端 服务端 -> 阿里云
目标机器 -> 阿里云
目标机器 -> 服务端 (logstash -> ElasticSearch)
目标机器 -> 服务端
目标机器 -> 服务端 (forward -> server)
8
传输格式
极简/分隔符/JSON格式
原内容
过滤后/JSON格式
可过滤
过滤后的索引文件
9
监控
logtail有控制台
无
logstash可监控
flume
Splunk forward
10
可靠性(数据丢失率)
高
高
高
高
高
11
数据迁移/硬盘增加[指日志数据]
监控增加目录配置
–
数据查询
12
查看[图形化界面]
阿里后台
阿里后台
kibana
分析结果入库查询?
服务端web控制台
13
权限
阿里账号
阿里账号
权限可分配
?
权限可分配
14
语法
大同小异
数据处理
15
扩展
局限于阿里云系列产品
插件
插件
?
16
图形化支持
是
是
是
是
是
17
支持导出
导出阿里云存储类系列产品
kibana导出cvs/excel
?
excel/其他
性能影响
18
日志搜集这一块
参考测评:https://blog.csdn.net/qq_27252133/article/details/54019965
试用下来,
1.阿里的Appender配置最为简单,只要替换相关jar包,并做log4j的配置即可,且不占用自己磁盘空间,直接上传服务器。但是收费!
2.商业版的Splunk也是一套比较完善且实用的工具,界面友好,操作简单,基本满足所有的需求。需要破解!
3.ELK是开源的,官网提供的安装包基本是一键安装式的,配置简单。一些奇怪问题可能网上资料少,需要研究!
4.阿里的logtail,整体的配置感觉要比ELK复杂稍许,功能强大,较局限于阿里系产品的转换(如数据导出)。但是收费!
5.Hadoop作为数据分析的大哥,过于重量级,且不是那么的熟悉,果断放弃。
6. 其他同类产品可能差不多,就不多做阐述了
最终通过一系列的考察\分析,最终选择了ELK作为公司的日志服务框架。
环境搭建之Mac下安装SplunkEnterprise日志服务程序/SplunkForward通用转发器部署客户端
环境搭建之ELK(ElasticSearch+LogStash+Kibana)Mac/Linux系统上搭建6.4.2
其他待补充
原创文章,转载请标明本文链接: 环境搭建之日志搜集/采集服务系统对比(logtail/hadoop/elk/splunk/appender)