用pyltp做分词、词性标注、ner

工具:win10、python2.7


主要参考官方文档

http://pyltp.readthedocs.io/zh_CN/latest/api.html#

http://ltp.readthedocs.io/zh_CN/latest/install.html


1、安装pyltp

https://github.com/hit-scir/pyltp

别忘了下载网页里面的模型,这个是会更新的

下载源码后解压,用cmd命令切换到解压目录,用python setup.py install命令安装,在python中import pyltp不报错说明就成功了


2、安装cmake

https://cmake.org/download/

在链接里根据自己电脑型号下载.msi文件,打开后按照提示一步步安装就行


3、下载VS

这个大家的电脑基本都有吧


4、编译

在项目文件夹下新建一个名为 build 的目录,在cmd命令中切换到build目录,运行:cmake..

构建后得到ALL_BUILD、RUN_TESTS、ZERO_CHECK三个VC Project。

使用VS打开ALL_BUILD项目,在 生成/配置管理器 中选择Release


右键生成

就能在tools/train/Release目录下看到otcws和otpos等套件


5、分词

 

from pyltp import Segmentor
def segmentor(sentence):
    segmentor = Segmentor()
    segmentor.load('cws.model')  #加载模型
    words = segmentor.segment(sentence)  #分词
    word_list = list(words)
    segmentor.release()  #释放模型
    return word_list


个性化分词

个性化分词是LTP的特色功能。个性化分词为了解决测试数据切换到如小说、财经等不同于新闻领域的领域。在切换到新领域时,用户只需要标注少量数据。个性化分词会在原有新闻数据基础之上进行增量训练。从而达到即利用新闻领域的丰富数据,又兼顾目标领域特殊性的目的。

用cmd命令切换到tools/train/Release目录

输入:

otcws.exe customized-learn --baseline-modelpath/to/your/model --model name.model --reference path/to/the/reference/file --development path/to/the/development/file

等待

其中:

reference:指定训练集文件

development:指定开发集文件

algorithm:指定参数学习方法,现在LTP在线学习框架支持两种参数学习方法,分别是passive aggressive(pa)和average perceptron(ap)。

model:指定输出模型文件名前缀,模型采用model.$iter方式命名

max-iter:指定最大迭代次数

rare-feature-threshold:模型裁剪力度,如果rare-feature-threshold为0,则只去掉为0的特征;rare-feature-threshold;如果大于0时将进一步去掉更新次数低于阈值的特征。关于模型裁剪算法细节,请参考模型裁剪 部分。

dump-details:指定保存模型时输出所有模型信息,这一参数用于 个性化分词 ,具体请参考 个性化分词 。

需要注意的是,reference和development都需要是人工切分的句子。



6、词性标注

from pyltp import Postagger
def posttagger(words):
    postagger = Postagger()
    postagger.load('pos.model')
    posttags = postagger.postag(words)  #词性标注
    postags = list(posttags)
    postagger.release()  #释放模型
    return postags


7、ner

def ner(words, postags):
    recognizer = NamedEntityRecognizer()
    recognizer.load('ner.model')  #加载模型
    netags = recognizer.recognize(words, postags)  #命名实体识别
    for word, ntag in zip(words, netags):
        print word + '/' + ntag
    recognizer.release()  #释放模型
    nerttags = list(netags)


8、读取文本

import codecs
news_files = codecs.open('C:test.txt', 'r', encoding='utf8')#读取的文本格式是encoding参数值,codecs函数将其转化为unicode格式。news_list = news_files.readlines()


9、保存

#新建一个txt文件保存命名实体识别的结果
out_file = codecs.open('ner.txt', 'w', encoding='utf8')

for row in news_list:
    news_str = row.encode("utf-8")#分词参数输入的格式必须为str格式
    words = segmentor(news_str)
    tags = posttagger(words)
    nertags = ner(words, tags)
    for word, nertag in zip(words, nertags):
     out_file.write(word.decode('utf-8') + '/' + nertag.decode('utf-8') + ' ')

out_file.close()  

10、提取

import codecs
import re

file=codecs.open('/ner.txt','r',encoding='utf8')
file_content = file.read()
file_list = file_content.split()
#print file_list

out_file = codecs.open('tiqu.txt', 'w', encoding='utf8')

ner_list=[]
phrase_list=[]
for word in file_list:
    if(re.search('Ni$',word)):#$表示结尾
        print word
        out_file.write(word+' ')
        word_list=word.split('/')
        # 判断是否单个词是否是命名实体
        if re.search(r'^S', word_list[1]):
          ner_list.append(word_list[0])
        elif re.search(r'^B', word_list[1]):
          phrase_list.append(word_list[0])
        elif re.search(r'^I', word_list[1]):
          phrase_list.append(word_list[0])
        else:
          phrase_list.append(word_list[0])
          # 把list转换为字符串.
    ner_phrase = ''.join(phrase_list)
    ner_list.append(ner_phrase)
    phrase_list = []
    #for ner in ner_list:

        #print ner


out_file.close()



©️2020 CSDN 皮肤主题: 大白 设计师: CSDN官方博客 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值