opencv2-第五章-图像处理
(1)图像形态学
opencv为进行图像的形态学变换提供了快速、方便的函数。基本的形态转换是膨胀与腐蚀,它们能实现多种功能:例如消除噪声、分割出独立的图像元素以及在图像中连接相邻的元素。形态学也常被用于寻找图像中的明显的极大值区域或极小值区域以及求出图像的梯度。
(2)膨胀与腐蚀
膨胀是指将一些图像(或图像中的一部分区域,为A)与核(为B)进行卷积。核可以是任何的形状或大小,它拥有一个单独定义出来的参考点。多数情况下,核是一个小的中间带有参考点的实心正方形或圆盘。核可以视为模板或掩码,膨胀是求局部最大值的操作。核B与图像卷积,即计算核B覆盖的区域的像素点最大值,并把这个最大值赋值给参考点指定的像素。这样就会使图像中的高亮区域逐渐增长,这样的增长就是“膨胀操作”的初衷。
腐蚀是膨胀的反操作。腐蚀操作要计算核区域像素的最小值。腐蚀可以通过下面的算法生成一个新的图像:当核B与图像卷积时,计算被B覆盖区域的最小像素值,并把这个值放到参考点上。
一般来说,膨胀扩展了区域A,而腐蚀缩小了区域A。此外,膨胀可以填补凹洞,腐蚀能够消除细的凸起。当然,准确的效果将取决于核,但当使用凸核时前面的说法一般是对的。
//-----------------------------------【main( )函数】--------------------------------------------
// 描述:控制台应用程序的入口函数,我们的程序从这里开始
//-----------------------------------------------------------------------------------------------
int main( )
{
//载入原图