计算机视觉之旅-进阶-目标跟踪

1. 什么是目标跟踪

计算机视觉中的目标跟踪(Visual Tracking)是指在连续的视频图像序列中,持续定位和跟踪移动的目标对象的算法与技术。其主要过程包括目标表示、定位、跟踪和模型更新。

1.1. 目标表示

构建目标模型,提取目标的视觉特征,比如颜色、纹理、形状、深度学习特征等。

1.2. 目标定位

在新帧中确定目标所在的位置,通常需要设计相似性度量方法,计算不同区域与目标表示之间的匹配程度。

1.3. 目标跟踪

当目标位置确定后,就可以在视频序列中持续跟踪目标的运动轨迹。跟踪过程需要考虑目标运动模型、匹配策略等。

1.4. 模型更新

在跟踪过程中,需要不断用新帧更新目标模型,以便适应目标外观变化。

 

2. 目标跟踪算法

常用的跟踪算法包括均值漂移、相关过滤、卡尔曼滤波、视觉模板匹配、基于深度学习的跟踪等。目标跟踪在自动驾驶、智能视频监控、人机互动等领域有广泛应用。整体来说,目标跟踪是计算机视觉一个非常活跃的研究方向。

2.1. 平均漂移跟踪(Mean Shift Tracking)

这是一种基于直方图的跟踪方法。它计算目标区域和候选区域之间的直方图距离,利用梯度下降法迭代搜索使两者直方图最相似的候选区域,从而实现跟踪。

2.1.1. 算法原理

1. 使用颜色直方图建立目标模型,表达目标的视觉特征。

2. 对跟踪框附近区域计算其与目标直方图的相似度。

3. 在相似度空间使用均值漂移迭代搜索,找到与目标直方图最相似的候选区域。

4. 把此候选区域作为目标新的位置,完成当前帧的跟踪。

5. 重复上述过程持续跟踪目标。

2.1.2 场景示例

假设第一帧跟踪目标是一个红色汽车,提取其颜色直方图作为目标模型。

在第二帧搜索目标附近的窗口,计算窗口与目标直方图的相似度。

相似度最高的窗口可能在目标右侧,表示目标漂移到了右边。

以此窗口为中心,迭代搜索与目标直方图最匹配的窗口作为目标新的位置。

如此反复操作,持续跟踪目标在视频序列中的移动位置。

简而言之,平均漂移跟踪使用颜色直方图表达目标,并迭代搜索最匹配的候选区域来定位和跟踪目标。

2.1.3 代码示例

 python

 import cv2

 import numpy as np

 

 # 读取第一帧并选择跟踪目标

 frame = cv2.imread('first_frame.jpg')  

 target = cv2.selectROI(frame)

 

 # 提取目标直方图作为模型 

 hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)

 hist = cv2.calcHist([hsv], [0, 1], None, [16, 16], [0, 180, 0, 256])

 

 # Mean Shift跟踪循环

 while True:

     hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)

     

     # 计算当前帧各个位置的直方图

     hsv_hist = cv2.calcHist([hsv], [0, 1], None, [16, 16], [0, 180, 0, 256])

 

     # 计算相似度,找到最相似区域

     similarity = cv2.compareHist(hist, hsv_hist, cv2.HISTCMP_BHATTACHARYYA)

     max_loc = np.argmax(similarity)

     

     # 中心点更新为最相似区域

     center = max_loc 

 

     # 重复上述过程持续跟踪

     ...  

 

通过迭代搜索使目标区域直方图最相似来定位和跟踪目标。

 

2.2. 相关滤波跟踪(Correlation Filter Tracking) 

相关滤波的思想是利用目标区域在相邻帧之间的相关性进行目标跟踪。这类方法使用相关滤波器来定位目标,可以快速实现跟踪。算法会先学习目标的过滤模板,然后利用这个模板与每一帧图像做相关运算找出目标位置。

其关键步骤是构建目标模型和设计相关性度量标准。目标模型通常采用目标区域的颜色、纹理、形状等特征。相关性度量常见的有归一化交叉相关、归一化相关系数和Sum of Squared Differences (SSD)。

相关滤波提供了一种比简单背景减除更为鲁棒的目标跟踪方法,其优点是运算效率高,实现简单。但其缺点是对目标外观变化和遮挡情况敏感。实际应用中,通常会与Kalman滤波等方法结合,提高跟踪的鲁棒性。

2.2.1 算法原理

1. 在第一帧中手动选择目标区域,提取该区域的特征(如颜色、纹理等)构建目标模型。

2. 在下一帧中,在搜索区域内滑动目标模型,计算目标模型与每个候选区域的相关性。相关性高的区域被认为是目标的新位置。

3. 更新目标模型,通常使用当前检测到的目标区域更新目标模型,重复步骤2进行跟踪。

2.2.2 代码示例

一个简单的python代码示例如下:

 import cv2

 import numpy as np

 

 # 读取第一帧,选取目标区域

 img = cv2.imread('first_frame.jpg')

 x, y, w, h = cv2.selectROI(img) 

 target = img[y:y+h, x:x+w]

 

 # 在视频的后续帧中跟踪目标

 cap = cv2.VideoCapture('video.mp4')

 while True:

     ret, frame = cap.read()

     

     # 计算当前帧与目标的相似度

     res = cv2.matchTemplate(frame,target,cv2.TM_CCORR_NORMED) 

     min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)

 

     # 寻找相似度最大的区域

     top_left = max_loc

     bottom_right = (top_left[0] + w, top_left[1] + h)

     cv2.rectangle(frame,top_left, bottom_right, 255, 2)

 

     # 显示结果

     cv2.imshow('Tracking', frame)

     

     # 更新目标模板 

     target = frame[top_left[1]:bottom_right[1], top_left[0]:bottom_right[0]] 

 

     if cv2.waitKey(1) == ord('q'):

         break

         

 cap.release()

 cv2.destroyAllWindows()

 

以上是一个简单的相关滤波跟踪示例,实际应用中可能会结合卡尔曼滤波等方法来优化。总体来说,相关滤波运算简单高效,但对目标外观变化和遮挡不太稳定。

 

2.3. 卡尔曼滤波跟踪(Kalman Filter Tracking)

卡尔曼滤波利用状态空间方法,结合当前测量值和上一状态的估计,来预测目标的运动状态,结合测量结果进行递归地定位和跟踪。它使用动力学模型预测目标运动,并纠正预测误差。

卡尔曼滤波的优点是对过程噪声和测量噪声都有比较好的优化。但需要参数调节,并且对非线性系统效果不佳。

2.3.1 算法原理

1. 建立状态方程:定义目标状态向量(如位置、速度等),建立描述目标运动的状态方程。

2. 建立测量方程:根据测量值(如目标位置)来观测目标状态的方程。 

3. 初始化:给出状态向量的初始值和协方差矩阵。

4. 预测:用上一状态根据状态方程预测当前状态。

5. 测量:根据测量值观测到当前目标状态。

6. 更新:利用预测值和测量值来更新状态估计和协方差矩阵。

7. 返回步骤4,持续跟踪目标。

2.3.2 代码示例

一个简单的Python代码示例:

 
 import cv2
 import numpy as np
 
 # 初始化跟踪目标状态矢量 [x,y,dx,dy]
 target_state = np.array([100, 75, 0, 0], dtype=np.float32) 
 
 # 初始化状态方程转移矩阵
 A = np.array([[1,0,1,0], [0,1,0,1], [0,0,1,0], [0,0,0,1]], np.float32)
 
 # 测量矩阵 
 H = np.array([[1,0,0,0], [0,1,0,0]], np.float32)
 
 # 初始化过程噪声和测量噪声矩阵
 Q = np.eye(4)*0.001  
 R = np.eye(2)*10
 
 # 开始跟踪
 cap = cv2.VideoCapture(0)
 while True:
     # 预测
     target_state = np.dot(A, target_state)
 
     # 测量更新
     ret, frame = cap.read()
     measurement = cv2.calcOpticalFlowPyrLK(prev_frame, frame, prev_pts, next_pts)
     kalman_gain = np.dot(A, np.linalg.inv(A + Q))
     target_state = target_state + np.dot(kalman_gain, (measurement - np.dot(H, target_state)))
 
     # 显示结果
     x, y = target_state[0], target_state[1] 
     cv2.circle(frame, (x, y), 5, (0,0,255), -1)
     cv2.imshow('Tracking', frame)
 
     if cv2.waitKey(1) == 27:
         break
 
 cap.release()
 cv2.destroyAllWindows()


这个示例实现了一个简单的基于卡尔曼滤波的目标跟踪,通过状态方程预测目标运动,并结合光流测量进行跟踪状态更新。可以作为卡尔曼滤波在计算机视觉跟踪中的应用参考。

 

2.4. 视觉模版跟踪(Visual Template Tracking)

这类方法构建目标视觉模型,然后匹配新框架与该模版的相似性来定位。典型的如基于核函数的跟踪和自适应视觉跟踪等。

视觉模板跟踪的关键在于相似性度量和模板更新。

相似性度量常用的方法有平方差匹配、归一化相关匹配、互信息等。

模板更新策略通常有以下几种:

(1) 不更新模板

(2) 每帧更新模板  

(3) 定期更新模板

(4) 选择性更新模板

 

2.4.1 算法思路

1. 在第一帧图像中手动提取目标区域作为模板。

2. 在后续帧中搜索与模板最相似的图像区域作为目标。

3. 更新模板以适应目标变化。

4. 重复第2-3步持续跟踪。

 

2.4.2 代码示例

一个简单的python代码示例:

 

 import cv2

 

 # 初始化

 template = cv2.imread('first_frame.jpg',0) 

 

 # 跟踪

 cap = cv2.VideoCapture('video.avi')

 

 while True:

     ret, frame = cap.read()

     

     # 模板匹配 

     matches = cv2.matchTemplate(frame,template,cv2.TM_SQDIFF_NORMED)

     min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(matches)

 

     # 绘制bounding box

     x, y = min_loc

     w, h = template.shape[::-1]

     cv2.rectangle(frame, (x,y), (x+w,y+h), (0,255,0), 2)

 

     # 显示结果

     cv2.imshow('Tracking', frame)

 

     # 更新模板

     template = frame[y:y+h, x:x+w]

     

     if cv2.waitKey(1) == ord('q'):

         break

         

 cap.release()

 cv2.destroyAllWindows()

 

这是一个简单的基于模板匹配的跟踪示例。视觉模板跟踪方法简单高效,但对目标变形和遮挡敏感。实际中可与其他跟踪方法结合以提高鲁棒性。

 

2.5. 基于深度学习的跟踪

基于深度学习的目标跟踪是最近几年比较热门的研究方向。相比传统跟踪算法,它具有更强的特征表达能力和更好的泛化性。

通过在大量视频数据上训练,深度跟踪网络可以学习强大的目标表示和非线性映射,对目标外观变化和光照变化具有更强的鲁棒性,增强了跟踪性能。但需要大量标注数据进行训练。会是未来研究的方向。

2.5.1 基于深度学习的跟踪方法

1. Siamese网络跟踪

这类方法使用Siamese网络学习目标的特征表示。在线建立目标模板,然后匹配搜索区域提取的特征与模板特征,实现跟踪。代表工作包括SiamFC、SiamRPN等。

2. 跟踪学习(Tracking Learning Detection, TLD)

TLD方法同时进行跟踪、学习和检测。跟踪结果用于生成训练样本学习目标模型,检测器重新检测目标从而进行长期跟踪。

3. Attention网络跟踪

这类方法使用Attention机制聚焦目标区域。可以高效提取与目标相关的特征,实现端到端跟踪。如ECO、CREST等。 

4. 基于ReID的跟踪

利用人员重识别(ReID)技术进行行人跟踪。训练ReID模型对行人进行特征表达,然后匹配特征实现多目标跟踪。

5. 基于强化学习的跟踪

利用强化学习算法优化跟踪模型,提高跟踪鲁棒性。如利用Actor-Critic网络进行在线跟踪器调优。

6. 端到端的深度跟踪

构建端到端的跟踪网络,直接从图像输入预测目标状态,实现检测和跟踪的一体化。如ATOM、DiMP等最新工作。

 

2.5.2 代码示例

下面给出一个端到端跟踪网络的简单python代码示例:

 

 import torch

 import torchvision

 

 # 定义跟踪网络

 class Tracker(torch.nn.Module):

     def __init__(self):

         super().__init__()

         self.feature_extractor = torchvision.models.resnet18()

         self.classifier = torch.nn.Linear(512, 4)

         

     def forward(self, x): 

         x = self.feature_extractor(x)

         x = self.classifier(x)

         return x

         

 # 初始化跟踪器       

 tracker = Tracker()

 tracker.load_state_dict(torch.load('tracker_model.pth'))

 tracker.eval().cuda()

 

 # 跟踪循环

 while True:

   img = preprocess(get_current_frame()) # 获取处理当前帧

   with torch.no_grad():

     pred = tracker(img.cuda()) # 跟踪器预测

   bbox = process_pred(pred) # 转换为目标框

   show_result(img, bbox) # 显示跟踪结果

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

撸码猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值