pytorch一种给模型参数赋值的方法。

class A(torch.nn.Module):
    def __init__(self):
        super(A, self).__init__()
        self.conv=torch.nn.Conv2d(2, 4, 1)
a = A()
a.state_dict().key()

打印:

odict_keys(['conv.weight', 'conv.bias'])

再执行:

b={}
for key in a.state_dict().keys():
    if 'weight' in key:
        w1, w2 = a.state_dict()[key].chunk(2, 1)
        (b[key + '.w11'], b[key + '.w12'], b[key + '.w13'], b[key + '.w14']) =w1.chunk(4, 0)
        (b[key + '.w21'], b[key + '.w22'], b[key + '.w23'], b[key + '.w24']) = w1.chunk(4, 0) 
 
c = torch.Tensor([1000])
b['conv.weight.w11'].copy_(c)
print(a.state_dict())

打印:

OrderedDict([('conv.weight', tensor([[[[ 1.0000e+03]],
         [[ 2.5883e-01]]],
        [[[ 1.0379e-01]],
         [[ 3.4200e-01]]],
        [[[ 4.6878e-01]],
         [[ 6.9393e-01]]],
        [[[-4.8772e-01]],
         [[-2.3880e-01]]]])), ('conv.bias', tensor([-0.6252, -0.5940,  0.5863, -0.1846]))])

我们发现c的值已经拷贝到模型a的参数里面了,这里b[‘conv.weight.w11’].copy_©不能写成b[‘conv.weight.w11’]=c,这样就会出错。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值