- 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
- 🍖 原作者:K同学啊 | 接辅导、项目定制
- 🚀 文章来源:K同学的学习圈子
环境配置:
Python-3.11.4 torch-2.0.1+cpu CPU
YOLOV5:
YOLOv5是一种基于深度学习的目标检测模型,由GluonCV团队开发。它是YOLO(You Only Look Once)系列模型的最新版本,采用了一种名为"Bag of Freebies"的方法,包括强大的数据增强、模型改进和训练技巧,以提高目标检测的性能。
YOLOv5模型简洁而灵活,能够在不同的硬件平台上高效运行,包括CPU、GPU和嵌入式设备。该模型还具有良好的可扩展性,可以在不同大小和分辨率的目标上取得很好的性能。
YOLOv5模型具有以下特点:
高性能:相对于以往的YOLO模型,YOLOv5在目标检测性能上取得了显著的提升。
灵活性:YOLOv5可以应用于多种目标检测场景,包括交通标志、人脸识别、物体检测等。
易用性:YOLOv5提供了简单易用的API接口和预训练模型,使得用户可以快速部署和定制自己的目标检测模型。
YOLOv5的核心组成部分包括以下几个方面:
Backbone网络:YOLOv5使用了一种称为CSPDarknet53的新型骨干网络作为其基础网络。CSPDarknet53采用了一种称为“cross stage partial connections”的结构,以提高模型的性能和效率。
Neck网络:YOLOv5还包括了一种名为“PANet”的特征融合模块,用于融合不同层级的特征图,以提高目标检测的准确性。
Head网络:YOLOv5使用了一种新的检测头结构,采用了类似于YoloV3的预测策略,但也引入了一些改进,以提高检测准确性和速度。
数据增强:YOLOv5引入了一系列强大的数据增强方法,包括随机缩放、横向翻转、色彩扭曲等,以增加训练数据的多样性,提高模型的泛化能力。
训练技巧:YOLOv5还采用了一些新的训练技巧,包括自适应图像大小、模型蒸馏、增量训练等,以提高模型的训练效率和准确性。
这些组成部分共同构成了YOLOv5的核心,使得该模型具有较高的检测性能和灵活性。
一、下载源码
https://github.com/ultralytics/yolov5
yolov5s.pt 提取码:bum6
借用一张k同学的图片
下载完成后解压并进入文件夹
打开下载好的压缩包,在文件地址栏输入cmd,回车,打开cmd后输入
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
设置默认从清华镜像下载。
pip install -r requirements.txt
二、实践运行
以相同的方法打开cmd并输入:
conda activate pytorch_env
激活环境
将需进行检测的图片放在picture文件夹下
在cmd中输入:
python detect.py --source picture\rain16.jpg --weight yolov5s.pt --img 640
python:运行Python解释器。
detect.py:指定要运行的脚本文件。
–source picture\rain16.jpg :指定待检测的图片路径,这里是picture文件夹下的rain16.jpg。
–weight yolov5s.pt:指定使用的权重文件。
–img 640:指定输入图像的大小为640x640像素。可调整。
运行
结果如下:
同理:可以使用视频进行检测
python detect.py --source MyVideo_2.mp4
结束。