YOLOv5白皮书-第Y1周:调用官方权重进行检测

本文介绍了YOLOV5,一种高性能、灵活且易用的目标检测模型,详细阐述了其环境配置、CSPDarknet53backbone、PANetNeck、Head网络以及数据增强和训练技巧。通过实际操作展示了如何下载和运行模型进行图片和视频检测。
摘要由CSDN通过智能技术生成

环境配置:

Python-3.11.4 torch-2.0.1+cpu CPU

YOLOV5:

YOLOv5是一种基于深度学习的目标检测模型,由GluonCV团队开发。它是YOLO(You Only Look Once)系列模型的最新版本,采用了一种名为"Bag of Freebies"的方法,包括强大的数据增强、模型改进和训练技巧,以提高目标检测的性能。

YOLOv5模型简洁而灵活,能够在不同的硬件平台上高效运行,包括CPU、GPU和嵌入式设备。该模型还具有良好的可扩展性,可以在不同大小和分辨率的目标上取得很好的性能。

YOLOv5模型具有以下特点:

高性能:相对于以往的YOLO模型,YOLOv5在目标检测性能上取得了显著的提升。
灵活性:YOLOv5可以应用于多种目标检测场景,包括交通标志、人脸识别、物体检测等。
易用性:YOLOv5提供了简单易用的API接口和预训练模型,使得用户可以快速部署和定制自己的目标检测模型。

YOLOv5的核心组成部分包括以下几个方面:

Backbone网络:YOLOv5使用了一种称为CSPDarknet53的新型骨干网络作为其基础网络。CSPDarknet53采用了一种称为“cross stage partial connections”的结构,以提高模型的性能和效率。

Neck网络:YOLOv5还包括了一种名为“PANet”的特征融合模块,用于融合不同层级的特征图,以提高目标检测的准确性。

Head网络:YOLOv5使用了一种新的检测头结构,采用了类似于YoloV3的预测策略,但也引入了一些改进,以提高检测准确性和速度。

数据增强:YOLOv5引入了一系列强大的数据增强方法,包括随机缩放、横向翻转、色彩扭曲等,以增加训练数据的多样性,提高模型的泛化能力。

训练技巧:YOLOv5还采用了一些新的训练技巧,包括自适应图像大小、模型蒸馏、增量训练等,以提高模型的训练效率和准确性。

这些组成部分共同构成了YOLOv5的核心,使得该模型具有较高的检测性能和灵活性。

一、下载源码

https://github.com/ultralytics/yolov5
yolov5s.pt 提取码:bum6
借用一张k同学的图片
在这里插入图片描述
下载完成后解压并进入文件夹在这里插入图片描述

打开下载好的压缩包,在文件地址栏输入cmd,回车,打开cmd后输入

pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple

设置默认从清华镜像下载。

pip install -r requirements.txt 

二、实践运行

以相同的方法打开cmd并输入:

conda activate pytorch_env

激活环境
将需进行检测的图片放在picture文件夹下
在这里插入图片描述
在cmd中输入:

python detect.py --source picture\rain16.jpg --weight yolov5s.pt --img 640

python:运行Python解释器。
detect.py:指定要运行的脚本文件。
–source picture\rain16.jpg :指定待检测的图片路径,这里是picture文件夹下的rain16.jpg。
–weight yolov5s.pt:指定使用的权重文件。
–img 640:指定输入图像的大小为640x640像素。可调整。
在这里插入图片描述
运行
结果如下:
在这里插入图片描述
同理:可以使用视频进行检测

python detect.py --source MyVideo_2.mp4

在这里插入图片描述
结束。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值