计算多张图片的移位距离

( A, B )---25*30*2---( 1, 0 )( 0, 1 )

做一个二分类的网络分类A和B,让A和B的训练集中都有多张图片,用一种平均值的办法把多张图片等效成两张图片,统计两张图片的移位距离,并比较移位距离和迭代次数的关系。

设AB训练集都只有两张图片,计算平均值

a8=(a0+a4)/2

a9=(a1+a5)/2

a10=(a2+a6)/2

a11=(a3+a7)/2

b8=(b0+b4)/2

b9=(b1+b5)/2

b10=(b2+b6)/2

b11=(b3+b7)/2

得到两张平均值图片

则网络( A A1, B B1 )---25*30*2---( 1, 0 )( 0, 1 )

的平均移位距离为

S=|a8-b8|+|a9-b9|+|a10-b10|+|a11-b11|

让收敛误差为7e-4,每个收敛误差统计199次,让训练集中图片的数量分别为1,2,5,10,20,50,100,500,1000,2000,3000,统计迭代次数和移位距离,并比较二者的关系。得到数据

5*5

1

1

1

3

1

2

2

0

0

0

0

3

4

4

2

4

3

1

2

3

4

s

2.74902

3.505882

3.737255

4.368627

5.231373

5.713725

7.062745

7.611765

8.556863

10.08235

7.00E-04

16024.14

13818.86

12726.82

11594.23

10989.32

10432.77

9773.97

9348.141

9022.221

8341.96

5*5

2

1

2

0

2

0

1

0

3

1

0

2

3

2

4

1

3

3

4

4

4

s

4.282353

4.327451

6.478431

5.045098

5.054902

3.35098

5.84902

5.011765

4.582353

7.75098

7.00E-04

10620.38

9137.095

7897.04

7667.322

7379.693

6874.015

5066.226

4720.362

4299.724

3462.206

5*5

5

2

0

1

0

1

2

1

0

0

3

4

2

2

3

4

3

3

4

1

4

s

4.672157

5.187451

4.527059

5.522353

3.840784

4.510588

4.838431

6.300392

5.907451

5.504314

7.00E-04

5417.065

5305.925

4151.533

3726.146

3341.035

2901.658

2698.709

2248.754

2182.276

1893.869

5*5

10

3

2

1

0

0

0

1

1

2

0

4

4

2

1

3

4

3

4

3

2

s

4.309804

4.464706

3.90902

5.866667

4.768235

5.805098

4.849804

3.591765

4.372941

4.789804

7.00E-04

3928.156

3441.593

2485.291

2468.367

2402.884

2191.719

2158.905

2018.171

2002.824

1859.322

5*5

20

3

2

1

0

2

1

0

1

0

0

4

3

2

1

4

3

4

4

3

2

s

4.205294

2.556275

3.835294

5.88098

3.760392

3.737451

5.752745

3.64

4.331765

4.215098

7.00E-04

8666.357

3551.176

2552.704

2381.131

2304.698

2290.206

1883.879

1748.965

1697.317

1618.573

5*5

50

2

3

2

1

0

0

0

1

1

0

3

4

4

2

2

4

1

3

4

3

s

2.66549

4.046039

3.918902

4.423843

3.249176

4.776392

5.984078

3.413098

4.202667

3.971922

7.00E-04

2446.824

2241.513

2169.352

2107.568

2044.724

1995.075

1963.06

1956.955

1769.859

1658.492

5*5

100

3

2

2

1

0

0

0

0

1

1

4

4

3

2

3

1

2

4

3

4

s

4.09349

4.037216

2.574941

4.289882

3.589765

5.747059

3.424941

4.635333

3.182863

3.945451

7.00E-04

2466.136

2307.613

2217.095

2206.055

2194.724

2129.392

2067.261

2064.05

1942.764

1908.814

5*5

500

2

2

3

0

0

0

0

1

1

1

3

4

4

2

1

3

4

3

2

4

s

1.841937

3.871867

3.993318

3.061655

5.784

3.767137

4.567875

2.981114

3.974

4.114322

7.00E-04

17644.72

3711.824

2843.116

2595.508

2304.387

2083.437

2054.95

1935.94

1805.226

1698.151

5*5

1000

2

0

2

3

1

0

0

1

0

1

3

2

4

4

3

1

4

2

3

4

s

1.967247

3.071443

3.734294

3.80609

2.993365

5.5968

4.462176

3.806086

3.764627

3.826263

7.00E-04

17949.56

3149.005

2865.623

2621.101

2339.327

2076.176

2057.337

2030.804

1831.829

1829.357

5*5

2000

2

0

2

3

1

0

0

1

0

1

3

2

4

4

3

1

4

2

3

4

s

1.971653

3.133484

3.843361

3.838414

2.892318

5.721686

4.602229

3.848649

3.901855

3.804335

7.00E-04

16360.47

2862.643

2583.503

2562.492

2388.03

2179.472

2056.06

2028.774

1862.261

1827.809

5*5

3000

2

0

2

3

1

0

0

1

0

1

3

2

4

4

3

1

4

2

3

4

s

2.028156

3.135631

3.926705

3.783718

2.83378

5.703769

4.601813

3.880624

3.863376

3.778277

7.00E-04

17897.95

2856.523

2594.99

2536.618

2399.015

2197.603

2087.286

2020.784

1861.719

1833.427

当只有1张时迭代次数和移位距离的反比关系很清晰与前述实验数据一致

当有5张图片时

或许是由于图片太少,对称性导致的不规则效应比较明显,n和s的反比关系不是特别突出,但s确实有增函数特征

训练集有100张图片的s曲线

当训练集有500张图片,迭代次数有巨大的数值差异,s曲线增函数特征加强

当训练集有1000张图片的时候,s曲线平滑了很多

训练集有2000张图片

当训练集有3000张图片时的s曲线和训练集有1000张图片时的s曲线相近。n和s有明显的反比特征。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

黑榆

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值