在行列可自由变换的平面上2点结构只有3个
(A,B)---6*30*2---(0,1)(1,0)
让A分别是2a1,2,3,让B全是0。当收敛误差为7e-4,收敛199次取迭代次数平均值,得到
结构 | 迭代次数 | |
2a1 | 58742.717 | 1.00001 |
2a2 | 80796.605 | 1.37545 |
2a3 | 103125.36 | 1.75556 |
按照迭代次数正比于结构搜索难度的假设,2a1,2,3的搜索难度分别是是1,1.37545,1.75556.
在行列可自由变换的平面上3点结构有6个
因为有结构加法关系
3(3a1-1)=2a1+2a2+2a3
- | - | - | - | - | - |
- | - | - | - | - | 1 |
- | - | - | - | 1 | - |
- | - | - | - | - | - |
- | - | - | - | - | - |
- | - | - | - | - | - |
3a1-1得到的2a2应如上图,但神经网络A-B差值矩阵的列变换对迭代次数没有影响
- | - | - | - | - | - | - | - | - | - | - | - | |
- | - | - | - | - | 1 | - | - | - | - | 1 | - | |
- | - | - | - | 1 | - | - | - | - | - | - | 1 | |
- | - | - | - | - | - | - | - | - | - | - | - | |
- | - | - | - | - | - | - | - | - | - | - | - | |
- | - | - | - | - | - | - | - | - | - | - | - |
所以这两个结构的迭代次数是相同的,搜索难度也是相同的。
3(3a2-1)=3*2a1
a | b | c | |||||||||||||||||
- | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | ||
- | - | - | - | 1 | - | - | - | - | - | 1 | - | - | - | - | - | - | - | ||
- | - | - | - | 1 | - | - | - | - | - | - | - | - | - | - | - | 1 | - | ||
- | - | - | - | - | - | - | - | - | - | 1 | - | - | - | - | - | 1 | - | ||
- | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | ||
- | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
严格的3a2-1得到的应该是a,b,c,3个结构,但是平移对迭代次数没有影响所以a,c是同一个结构,b的收敛迭代次数为61088.06,比a,c要大约4%。所以认为行可以自由变换将带来约4%的误差,但这种近似简化了计算。
3(3a3-1)=2a1+2*2a2
同样为了简化计算没有考虑2a1两点间的距离
3(3a4-1)=2*2a2+2a3
3(3a5-1)=3*2a2
3(3a6-1)=3*2a3
比较这6个结构的迭代次数和搜索难度
迭代次数 | 加法 | 搜索难度 | 和 | |
1 | 28392.17 | 1--1*1--2*1--3*, | 1+1.3754+1.7556 | 4.131 |
2 | 36372.48 | 3--1*, | 3*1 | 3 |
3 | 36629.86 | 1--1*2--2*, | 1+2*1.3754 | 3.7508 |
4 | 51425.59 | 2--2*1--3*, | 2*1.3754+1.7556 | 4.5064 |
5 | 61047.4 | 3--2*, | 3*1.3754 | 4.1262 |
6 | 91182.79 | 3--3*, | 3*1.7556 | 5.2668 |
把搜索难度和画成图
尽管整体上看这条曲线是增函数,但第1个点太大了,第2个点太小了。3a1是2a1+2a2+2a3而3a2是3*2a1,即使让3a2的结构b增加4%,也不可能比3a1更大。这个误差的可能原因是,这里只考虑了由2标定3,但4点结构对3点结构的顺序也有影响,正确的3点结构顺序应该可以同时协调2,3,4这3种顺序,使他们的内在顺序尽可能的一致。
数据
迭代次数 | |||||||
- | - | - | - | - | 1 | 58742.717 | |
- | - | - | - | - | 1 | ||
- | - | - | - | - | - | ||
- | - | - | - | - | - | ||
- | - | - | - | - | - | ||
- | - | - | - | - | - | ||
- | - | - | - | 1 | - | 80796.605 | |
- | - | - | - | - | 1 | ||
- | - | - | - | - | - | ||
- | - | - | - | - | - | ||
- | - | - | - | - | - | ||
- | - | - | - | - | - | ||
- | - | - | - | - | - | 103125.36 | |
- | - | - | - | 1 | 1 | ||
- | - | - | - | - | - | ||
- | - | - | - | - | - | ||
- | - | - | - | - | - | ||
- | - | - | - | - | - | ||