080python农业病虫害检测pyqt版本

该博客介绍了使用Python和深度学习进行农业病虫害检测,涉及AlexNet、GoogleNet、VGG、ResNet等10多种模型的训练与对比,展示了训练过程中的精度、召回率和F1-score。此外,还利用PyQT创建了可视化界面,用于加载图片进行识别。
摘要由CSDN通过智能技术生成

​demo仓库和视频演示找080期:

到此一游7758258的个人空间哔哩哔哩bilibili

效果展示图如下:

 代码文件展示如下:

运行01数据集文本生成制作.py可以读取图片路径保存再txt文本中,

运行02train.py可以对txt文本中的图片路径读取并训练模型,

在02中可以选择的模型有10多种,可以都训练进行对比、包括alexnet、DenseNet、DLA、GoogleNet、Mobilenet、ResNet、ResNeXt、ShuffleNet、VGG、EfficientNet和Swin transformer等10多种模型。

 训练的每个epoch都会显示准确率precision、召回率recall和 f1-score

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值