068基于CNN卷积神经网络的大豆叶片形态检测pyqt版本

本文介绍了如何使用PyQT结合卷积神经网络(CNN)进行大豆叶片形态检测。通过运行三个Python脚本,分别进行数据集处理、模型训练和交互式界面的创建,展示了CNN在图像识别上的应用。文章还简要讨论了CNN的基本原理和知名模型如AlexNet、GoogleNet、VGG、RESNET、MobileNet和ShuffleNet的特点。
摘要由CSDN通过智能技术生成

​demo仓库和视频演示找068-069期:

到此一游7758258的个人空间_哔哩哔哩_bilibili

效果展示图如下:

 代码文件展示如下:

运行01数据集文本生成制作.py可以对data文件夹下图片保存在txt文本中。

运行02train.py读取txt中的图片路径和对应标签读取训练,并生成评价指标折线图保存在result文件夹中。

运行03.py可以生成pyqt的交互界面,通过点击按钮对感兴趣的图片进行加载,然后进行检测识别。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值