抽样调查之比率估计与回归估计
1、欲调查某地区2000户家庭每月的电信增值业务支出情况,采用简单随机抽样,调查了30户,调查每户家庭的电信业务支出和增值业务支出,数据见表1.。若本地区每户家庭的平均电信业务支出为362.8元,试给出每户家庭平均增值业务支出的比率估计和回归估计,并比较两者的精度。
编号 | 增值业务 | 电信支出 | 编号 | 增值业务 | 电信支出 |
---|---|---|---|---|---|
1 | 80 | 180 | 16 | 58 | 168 |
2 | 100 | 260 | 17 | 90 | 200 |
3 | 160 | 300 | 18 | 110 | 180 |
4 | 350 | 500 | 19 | 175 | 290 |
5 | 100 | 210 | 20 | 50 | 150 |
6 | 30 | 100 | 21 | 140 | 240 |
7 | 30 | 120 | 22 | 90 | 220 |
8 | 50 | 160 | 23 | 70 | 160 |
9 | 110 | 200 | 24 | 125 | 235 |
10 | 70 | 280 | 25 | 80 | 190 |
11 | 200 | 350 | 26 | 110 | 240 |
12 | 150 | 240 | 27 | 120 | 230 |
13 | 140 | 210 | 28 | 150 | 200 |
14 | 300 | 450 | 29 | 60 | 140 |
15 | 60 | 100 | 30 | 110 | 220 |
【解题过程】写清楚解题过程,公式用公式编辑器输入。
解:记电信支出为X,增值业务为Y。
已知:N=2000,n=30
根据表计算得:
(一)比率估计
样本比率
比率估计量
比率估计量的方差估计
比率估计量的标准差估计
(二)回归估计:
回归系数估计
回归估计量
回归估计量的方差估计
回归估计量的标准差估计
故综上所述,回归估计具有更高的精度。
【R语言代码】
#总体单元数
N=2000
#样本量
n=30
#总体均值
Xmean=362.8
#调查数据
y1=c(80,100,160,350,100,30,30,50,110,70,200,150,140,300,60,58,90,110,
175,50,140,90,70,125,80,110,120,150,60,110)
x1=c(180,260,300,500,210,100,120,160,200,280,350,240,210,450,100,
168,200,180,290,150,240,220,160,235,190,240,230,200,140,220)
#样本均值
ymean=mean(y1);ymean
xmean=mean(x1);xmean
#样本方差
sy2=sum((y1-ymean)^2)/(n-1);sy2
sx2=sum((x1-xmean)^2)/(n-1);sx2
#样本协方差
sxy=sum((x1-xmean)*(y1-ymean))/(n-1);sxy
【输出结果】
> #样本均值
> ymean=mean(y1);ymean
[1] 115.6
> xmean=mean(x1);xmean
[1] 224.1
> #样本方差
> sy2=sum((y1-ymean)^2)/(n-1);sy2
[1] 5055.628
> sx2=sum((x1-xmean)^2)/(n-1);sx2
[1] 7973.266
> #样本协方差
> sxy=sum((x1-xmean)*(y1-ymean))/(n-1);sxy
[1] 5910.007
【R语言代码】
#样本比率
r=round(ymean/xmean,3);r
#每户家庭平均增值业务支出的比率估计量为
Ymean=r*Xmean;Ymean
#比率估计量的方差估计为
vY=(1-n/N)/n*sum(sy2+sx2*r^2-2*r*sxy);vY
#比率估计量的标准差估计为
sdvY=sqrt(vY);sdvY
【输出结果】
> #样本比率
> r=round(ymean/xmean,3);r
[1] 0.516
> #每户家庭平均增值业务支出的比率估计量为
> Ymean=r*Xmean;Ymean
[1] 187.2048
> #比率估计量的方差估计为
> vY=(1-n/N)/n*sum(sy2+sx2*r^2-2*r*sxy);vY
[1] 35.44129
> #比率估计量的标准差估计为
> sdvY=sqrt(vY);sdvY
[1] 5.953259
【R语言代码】
#回归系数估计为
b=round(sum((y1-ymean)*(x1-xmean))/sum((x1-xmean)^2),3);b
#每户家庭平均增值业务支出的回归估计量为
ymeanLR=ymean+b*(Xmean-xmean);ymeanLR
#回归估计量的方差估计为
vYLR=(1-n/N)/(n*(n-2))*sum((y1-ymean-b*(x1-xmean))^2);vYLR
#回归估计量的标准差估计为
sdvYLR=sqrt(vYLR);sdvYLR
【输出结果】
> #回归系数估计为
> b=round(sum((y1-ymean)*(x1-xmean))/sum((x1-xmean)^2),3);b
[1] 0.741
> #每户家庭平均增值业务支出的回归估计量为
> ymeanLR=ymean+b*(Xmean-xmean);ymeanLR
[1] 218.3767
> #回归估计量的方差估计为
> vYLR=(1-n/N)/(n*(n-2))*sum((y1-ymean-b*(x1-xmean))^2);vYLR
[1] 22.95286
> #回归估计量的标准差估计为
> sdvYLR=sqrt(vYLR);sdvYLR
[1] 4.790914