抽样调查之比率估计与回归估计

1、欲调查某地区2000户家庭每月的电信增值业务支出情况,采用简单随机抽样,调查了30户,调查每户家庭的电信业务支出和增值业务支出,数据见表1.。若本地区每户家庭的平均电信业务支出为362.8元,试给出每户家庭平均增值业务支出的比率估计和回归估计,并比较两者的精度。

编号增值业务电信支出编号增值业务电信支出
1801801658168
21002601790200
316030018110180
435050019175290
51002102050150
63010021140240
7301202290220
8501602370160
911020024125235
10702802580190
1120035026110240
1215024027120230
1314021028150200
143004502960140
156010030110220

【解题过程】写清楚解题过程,公式用公式编辑器输入。
解:记电信支出为X,增值业务为Y。
已知:N=2000,n=30在这里插入图片描述

根据表计算得:在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

(一)比率估计

样本比率

在这里插入图片描述

比率估计量

在这里插入图片描述

比率估计量的方差估计

在这里插入图片描述

比率估计量的标准差估计

在这里插入图片描述

(二)回归估计:

回归系数估计

在这里插入图片描述

回归估计量

在这里插入图片描述

回归估计量的方差估计

在这里插入图片描述

回归估计量的标准差估计

在这里插入图片描述

故综上所述,回归估计具有更高的精度。

【R语言代码】

#总体单元数
N=2000   
#样本量
n=30  
#总体均值
Xmean=362.8  
#调查数据
y1=c(80,100,160,350,100,30,30,50,110,70,200,150,140,300,60,58,90,110,
     175,50,140,90,70,125,80,110,120,150,60,110)
x1=c(180,260,300,500,210,100,120,160,200,280,350,240,210,450,100,
     168,200,180,290,150,240,220,160,235,190,240,230,200,140,220)
#样本均值
ymean=mean(y1);ymean
xmean=mean(x1);xmean
#样本方差
sy2=sum((y1-ymean)^2)/(n-1);sy2
sx2=sum((x1-xmean)^2)/(n-1);sx2
#样本协方差
sxy=sum((x1-xmean)*(y1-ymean))/(n-1);sxy

【输出结果】

> #样本均值
> ymean=mean(y1);ymean
[1] 115.6
> xmean=mean(x1);xmean
[1] 224.1
> #样本方差
> sy2=sum((y1-ymean)^2)/(n-1);sy2
[1] 5055.628
> sx2=sum((x1-xmean)^2)/(n-1);sx2
[1] 7973.266
> #样本协方差
> sxy=sum((x1-xmean)*(y1-ymean))/(n-1);sxy
[1] 5910.007

【R语言代码】

#样本比率
r=round(ymean/xmean,3);r
#每户家庭平均增值业务支出的比率估计量为
Ymean=r*Xmean;Ymean
#比率估计量的方差估计为
vY=(1-n/N)/n*sum(sy2+sx2*r^2-2*r*sxy);vY
#比率估计量的标准差估计为
sdvY=sqrt(vY);sdvY

【输出结果】

> #样本比率
> r=round(ymean/xmean,3);r
[1] 0.516
> #每户家庭平均增值业务支出的比率估计量为
> Ymean=r*Xmean;Ymean
[1] 187.2048
> #比率估计量的方差估计为
> vY=(1-n/N)/n*sum(sy2+sx2*r^2-2*r*sxy);vY
[1] 35.44129
> #比率估计量的标准差估计为
> sdvY=sqrt(vY);sdvY
[1] 5.953259

【R语言代码】

#回归系数估计为
b=round(sum((y1-ymean)*(x1-xmean))/sum((x1-xmean)^2),3);b
#每户家庭平均增值业务支出的回归估计量为
ymeanLR=ymean+b*(Xmean-xmean);ymeanLR
#回归估计量的方差估计为
vYLR=(1-n/N)/(n*(n-2))*sum((y1-ymean-b*(x1-xmean))^2);vYLR
#回归估计量的标准差估计为
sdvYLR=sqrt(vYLR);sdvYLR

【输出结果】

> #回归系数估计为
> b=round(sum((y1-ymean)*(x1-xmean))/sum((x1-xmean)^2),3);b
[1] 0.741
> #每户家庭平均增值业务支出的回归估计量为
> ymeanLR=ymean+b*(Xmean-xmean);ymeanLR
[1] 218.3767
> #回归估计量的方差估计为
> vYLR=(1-n/N)/(n*(n-2))*sum((y1-ymean-b*(x1-xmean))^2);vYLR
[1] 22.95286
> #回归估计量的标准差估计为
> sdvYLR=sqrt(vYLR);sdvYLR
[1] 4.790914
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BoBo玩ROS

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值