OneHot编码用于用于生产解决维度问题

7 篇文章 2 订阅
3 篇文章 0 订阅

不知道大家在使用OneHot编码的过程中有没有遇到这样的问题,比如在训练样本中某一列的值(离散)为“green” "red" "yellow",并对其进行了one-hot编码,效果如下:

当在生产环境中实时读取新增数据时,出现一些训练样本中未见过的数据,如"green" "blue",其one-hot编码如下:

那么在这种情况下会导致数据维度不一致,但由于训练好的模型输入维度是确定的,这可能会导致模型无法正常计算,那么如何解决这个问题呢?

可以使用pandas中的Categorical解决这个问题,具体代码如下:

#!/usr/bin/env python
# -*- coding: utf-8 -*-
__author__ = 'Seven'
import pandas as pd

train_words = ['green', 'red', 'yellow']
product_words = pd.Series(['green', 'blue'])

product_words_op = pd.Categorical(product_words, categories=train_words)

print(pd.get_dummies(product_words_op))

执行效果如下:

由于green已知类别的列表中,green的所有one-hot编码条目都为零。如果你在生产数据中发现了新的数据,那么对应的行应该都是0。此种方法可以在一定程度上解决生产环境中的维度问题导致模型无法计算。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_Seven°

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值