pandas学习整理(一)

十分钟搞定pandas

习惯上导入包的方式:

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

一、 创建对象

import pandas as pd


# 通过传递一个list对象来创建一个Series,pandas会默认创建整形索引;
s = pd.Series([1, 3, 5, np.nan, 6, 8])
s

    0    1.0
    1    3.0
    2    5.0
    3    NaN
    4    6.0
    5    8.0
    dtype: float64
import pandas as pd


# 通过传递一个numpy array,时间索引以及列标签来创建一个DataFrame;
dates = pd.date_range('20170101', periods=6)
df = pd.DataFrame(np.random.randn(6,4), index=dates, columns=list('ABCD'))
df
ABCD
2017-01-01-0.338806-1.3433081.1963531.414468
2017-01-02-0.5068251.1525110.972928-0.154819
2017-01-031.4460930.0835990.068672-0.217771
2017-01-04-0.312771-0.635625-2.0051670.233515
2017-01-050.955924-0.1310350.473385-0.827717
2017-01-060.455371-0.0796771.030877-0.276262
import pandas as pd

# 通过传递一个能够被转换成类似序列结构的字典对象来创建一个DataFrame;
# mydic = {
#     'A' : 1.,
#     'B' : 2.
# }

df2 = pd.DataFrame({
    'A' : 1.,
    'B' : pd.Timestamp('20130102'), 
    'C' : pd.Series(1, index=range(4), dtype='float32'),
    'D' : np.array([3]*4, dtype='int32'),
    'E' : pd.Categorical(['test1', 'test2', 'test3', 'test4']),
    'F' : 'foo'
})

df2
ABCDEF
01.02013-01-021.03test1foo
11.02013-01-021.03test2foo
21.02013-01-021.03test3foo
31.02013-01-021.03test4foo
# 查看不同列的数据类型
df2.dtypes


    A           float64
    B    datetime64[ns]
    C           float32
    D             int32
    E          category
    F            object
    dtype: object

二、 查看数据

查看DataFrame头部和尾部的行

# 不添加参数默认显示前5行;
df.head(1)
ABCD
2017-01-01-0.338806-1.3433081.1963531.414468
#  不添加参数默认显示后5行;
df.tail(3)
ABCD
2017-01-04-0.312771-0.635625-2.0051670.233515
2017-01-050.955924-0.1310350.473385-0.827717
2017-01-060.455371-0.0796771.030877-0.276262

显示索引、列和底层的numpy数据

print "显示索引:"
print df.index

print "\n显示列:"
print df.columns

print "\n显示底层numpy数据:"
print df.values
运行结果如下:
    显示索引:
    DatetimeIndex(['2017-01-01', '2017-01-02', '2017-01-03', '2017-01-04',
                   '2017-01-05', '2017-01-06'],
                  dtype='datetime64[ns]', freq='D')

    显示列:
    Index([u'A', u'B', u'C', u'D'], dtype='object')

    显示底层numpy数据:
    [[-0.33880624 -1.34330788  1.19635337  1.41446846]
     [-0.50682548  1.15251089  0.97292792 -0.15481877]
     [ 1.4460934   0.08359888  0.06867169 -0.21777067]
     [-0.3127707  -0.63562542 -2.00516672  0.23351479]
     [ 0.95592407 -0.13103515  0.47338504 -0.82771723]
     [ 0.45537138 -0.07967712  1.03087708 -0.27626179]]

数据的快速统计汇总describe函数

df.describe()
ABCD
count6.0000006.0000006.0000006.000000
mean0.283164-0.1589230.2895080.028569
std0.8000920.8265281.1989300.759366
min-0.506825-1.343308-2.005167-0.827717
25%-0.332297-0.5094780.169850-0.261639
50%0.071300-0.1053560.723156-0.186295
75%0.8307860.0427801.0163900.136431
max1.4460931.1525111.1963531.414468

数据的转置

df.T
2017-01-01 00:00:002017-01-02 00:00:002017-01-03 00:00:002017-01-04 00:00:002017-01-05 00:00:002017-01-06 00:00:00
A-0.338806-0.5068251.446093-0.3127710.9559240.455371
B-1.3433081.1525110.083599-0.635625-0.131035-0.079677
C1.1963530.9729280.068672-2.0051670.4733851.030877
D1.414468-0.154819-0.2177710.233515-0.827717-0.276262

按轴进行排序

df.sort_index(axis=1, ascending=False)
DCBA
2017-01-011.4144681.196353-1.343308-0.338806
2017-01-02-0.1548190.9729281.152511-0.506825
2017-01-03-0.2177710.0686720.0835991.446093
2017-01-040.233515-2.005167-0.635625-0.312771
2017-01-05-0.8277170.473385-0.1310350.955924
2017-01-06-0.2762621.030877-0.0796770.455371

按值进行排序

df.sort_values(by='A')
ABCD
2017-01-02-0.5068251.1525110.972928-0.154819
2017-01-01-0.338806-1.3433081.1963531.414468
2017-01-04-0.312771-0.635625-2.0051670.233515
2017-01-060.455371-0.0796771.030877-0.276262
2017-01-050.955924-0.1310350.473385-0.827717
2017-01-031.4460930.0835990.068672-0.217771

三、 选择

标准的python/numpy的选择和设置表达式都能够直接派上用场, 但是作为工程中使用的代码,
推荐使用经过优化的pandas数据访问方式:.at, .iat, .loc, .iloc和.ix。

获取

# 1. 选择一个单独的列,将返回一个Series,等同于df.A
df['A']

# 2. 通过切片操作进行选择
df[0:3]
df['20170101':'20170104']
ABCD
2017-01-01-0.338806-1.3433081.1963531.414468
2017-01-02-0.5068251.1525110.972928-0.154819
2017-01-031.4460930.0835990.068672-0.217771
2017-01-04-0.312771-0.635625-2.0051670.233515

通过标签选择

# 1. 使用标签获取一个交叉的区域
df.loc[dates[0]]


# 2. 
df.loc[:, ['A', 'B']]

# 3. 
df.loc['20170102':'20170104',['A','B']]


# 4. 
df.loc['20170102', ['A', 'B']]

# 5. 
df.loc[dates[0], 'A']

# 6. 
df.at[dates[0], 'A']
-0.338806236660884

通过位置进行选择

# 1. 
df.iloc[3]
A -0.312771 B -0.635625 C -2.005167 D 0.233515 Name: 2017-01-04 00:00:00, dtype: float64
# 2. 
df.iloc[3:5, 0:2]
AB
2017-01-04-0.312771-0.635625
2017-01-050.955924-0.131035
# 3. 
df.iloc[[1,2,4], [0,2]]
AC
2017-01-02-0.5068250.972928
2017-01-031.4460930.068672
2017-01-050.9559240.473385
# 4. 
df.iloc[1:3, :]
ABCD
2017-01-02-0.5068251.1525110.972928-0.154819
2017-01-031.4460930.0835990.068672-0.217771
# 5. 
df.iloc[:, 1:3]
BC
2017-01-01-1.3433081.196353
2017-01-021.1525110.972928
2017-01-030.0835990.068672
2017-01-04-0.635625-2.005167
2017-01-05-0.1310350.473385
2017-01-06-0.0796771.030877
# 6. 获取特定的值
df.iloc[1,1]
1.1525108922362974
# 等价6的操作,快速访问特定的值
df.iat[1,1]
1.1525108922362974

布尔索引

# 1. 
df[df.A > 0]
ABCD
2017-01-031.4460930.0835990.068672-0.217771
2017-01-050.955924-0.1310350.473385-0.827717
2017-01-060.455371-0.0796771.030877-0.276262
# 2. 使用where操作来选择数据
df[df > 0]
ABCD
2017-01-01NaNNaN1.1963531.414468
2017-01-02NaN1.1525110.972928NaN
2017-01-031.4460930.0835990.068672NaN
2017-01-04NaNNaNNaN0.233515
2017-01-050.955924NaN0.473385NaN
2017-01-060.455371NaN1.030877NaN
# 3. isin方法过滤

df2 = df.copy()
df2['E'] = ['one', 'one', 'two', 'three', 'four', 'three']
df2[df2['E'].isin(['two', 'four'])]

ABCDE
2017-01-031.4460930.0835990.068672-0.217771two
2017-01-050.955924-0.1310350.473385-0.827717four

设置

# 1. 
s1 = pd.Series([1,2,3,4,5,6], index=pd.date_range('20170102', periods=6))
df['F']=s1
df

ABCDF
2017-01-01-0.338806-1.3433081.1963531.414468NaN
2017-01-02-0.5068251.1525110.972928-0.1548191.0
2017-01-031.4460930.0835990.068672-0.2177712.0
2017-01-04-0.312771-0.635625-2.0051670.2335153.0
2017-01-050.955924-0.1310350.473385-0.8277174.0
2017-01-060.455371-0.0796771.030877-0.2762625.0
# 2. 通过标签设置新的值

df.at[dates[0], 'A'] = 0
df
ABCDF
2017-01-010.000000-1.3433081.1963531.414468NaN
2017-01-02-0.5068251.1525110.972928-0.1548191.0
2017-01-031.4460930.0835990.068672-0.2177712.0
2017-01-04-0.312771-0.635625-2.0051670.2335153.0
2017-01-050.955924-0.1310350.473385-0.8277174.0
2017-01-060.455371-0.0796771.030877-0.2762625.0
# 3. 通过位置设置新的值
df.iat[0,1] = 0
df
ABCDF
2017-01-010.0000000.0000001.1963531.414468NaN
2017-01-02-0.5068251.1525110.972928-0.1548191.0
2017-01-031.4460930.0835990.068672-0.2177712.0
2017-01-04-0.312771-0.635625-2.0051670.2335153.0
2017-01-050.955924-0.1310350.473385-0.8277174.0
2017-01-060.455371-0.0796771.030877-0.2762625.0
# 4. 通过numpy数组设置一组新值
df.loc[:, 'D'] = np.array([5] * len(df))
df
ABCDF
2017-01-010.0000000.0000001.1963535NaN
2017-01-02-0.5068251.1525110.97292851.0
2017-01-031.4460930.0835990.06867252.0
2017-01-04-0.312771-0.635625-2.00516753.0
2017-01-050.955924-0.1310350.47338554.0
2017-01-060.455371-0.0796771.03087755.0
# 5. 通过where操作来设置新的值
df2 = df.copy()

df2[df2<0]  = -df2
df2
ABCDF
2017-01-010.0000000.0000001.1963535NaN
2017-01-020.5068251.1525110.97292851.0
2017-01-031.4460930.0835990.06867252.0
2017-01-040.3127710.6356252.00516753.0
2017-01-050.9559240.1310350.47338554.0
2017-01-060.4553710.0796771.03087755.0

四、 缺失值处理

在pandas中,使用np.nan来代替缺失值,这些值默认不会包含在计算中。

# 1. reindex()可以对指定轴上的索引进行改变,增加,删除操作,这将返回原始数据的一个拷贝;

df1 = df.reindex(index=dates[0:4], columns=list(df.columns)+['E'])
df1.loc[dates[0]:dates[1], 'E'] = 1
df1
ABCDFE
2017-01-010.0000000.0000001.1963535NaN1.0
2017-01-02-0.5068251.1525110.97292851.01.0
2017-01-031.4460930.0835990.06867252.0NaN
2017-01-04-0.312771-0.635625-2.00516753.0NaN
# 2. 去掉包含缺失值的行
df1.dropna(how='any')
ABCDFE
2017-01-02-0.5068251.1525110.97292851.01.0
# 3. 对缺失值进行填充
df1.fillna(value=3)
ABCDFE
2017-01-010.0000000.0000001.19635353.01.0
2017-01-02-0.5068251.1525110.97292851.01.0
2017-01-031.4460930.0835990.06867252.03.0
2017-01-04-0.312771-0.635625-2.00516753.03.0
# 4. 对数据进行布尔填充
pd.isnull(df1)
ABCDFE
2017-01-01FalseFalseFalseFalseTrueFalse
2017-01-02FalseFalseFalseFalseFalseFalse
2017-01-03FalseFalseFalseFalseFalseTrue
2017-01-04FalseFalseFalseFalseFalseTrue

五、 相关操作

统计

# 1. 执行描述性统计
df.mean()
运行结果如下:

    A    0.339632
    B    0.064962
    C    0.289508
    D    5.000000
    F    3.000000
    dtype: float64
# 2. 在其他轴上进行相同的操作;
df.mean(1)
运行结果如下:
    2017-01-01    1.549088
    2017-01-02    1.523723
    2017-01-03    1.719673
    2017-01-04    1.009287
    2017-01-05    2.059655
    2017-01-06    2.281314
    Freq: D, dtype: float64
# 3. 对于拥有不同维度,需要对齐的对象进行操作,pandas会自动沿着指定的维度进行广播;
s = pd.Series([1, 3, 5, np.nan, 6, 8], index=dates).shift(2)
print s

df.sub(s, axis='index')
运行结果如下:
    2017-01-01    NaN
    2017-01-02    NaN
    2017-01-03    1.0
    2017-01-04    3.0
    2017-01-05    5.0
    2017-01-06    NaN
    Freq: D, dtype: float64
ABCDF
2017-01-01NaNNaNNaNNaNNaN
2017-01-02NaNNaNNaNNaNNaN
2017-01-030.446093-0.916401-0.9313284.01.0
2017-01-04-3.312771-3.635625-5.0051672.00.0
2017-01-05-4.044076-5.131035-4.5266150.0-1.0
2017-01-06NaNNaNNaNNaNNaN

应用Apply

# 1. 对数据应用函数


df.apply(np.cumsum)
df.apply(lambda x: x.max()-x.min())
A 1.952919 B 1.788136 C 3.201520 D 0.000000 F 4.000000 dtype: float64 ### 直方图
s = pd.Series(np.random.randint(0,7, size=10))
# 对s中的值统计出现次数
s.value_counts()
运行结果如下:
    5    3
    4    3
    1    3
    2    1
    dtype: int64

字符串方法

# Series对象在其str属性中配备了一组字符串处理方法,可以很容易的应用到数组中的每个元素;

s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 
               'CABA', 'dog', 'cat'])
s.str.lower()
运行结果如下:

    0       a
    1       b
    2       c
    3    aaba
    4    baca
    5     NaN
    6    caba
    7     dog
    8     cat
    dtype: object

六、 合并

pandas提供了大量方法对Series, DataFrame和Panel对象进行各种逻辑关系的合并操作;

6-1、 Concat方法


# np.random.randn(10,4)获取10行4列的数据;
df = pd.DataFrame(np.random.randn(10,4))

pieces = [df[:3], df[3:7], df[7:]]
pd.concat(pieces)
0123
0-0.361157-0.3316000.426531-1.063448
10.0828631.2932610.7290091.119674
2-0.0777580.0245952.142237-0.857855
32.4778440.1180691.390542-0.645197
4-1.295224-0.4107281.256108-1.402479
51.1355681.054733-1.793129-0.620808
6-1.0367411.4617210.167975-0.645020
7-0.709849-0.5275621.129764-0.610033
80.4438991.176945-0.558200-0.122540
90.2442921.1083300.417284-0.455202

2、 join方法


# 类似与sql类型的合并


left = pd.DataFrame({
    'key': ['foo', 'foo'],
    'lval': [1,2],    
    })

right = pd.DataFrame({
    'key' : ['foo', 'foo'], 
    'rval' : [4, 5],
    })

pd.merge(left, right, on='key')

keylvalrval
0foo14
1foo15
2foo24
3foo25

6-3、 append方法

# 3. append方法
# 将一行连接到一个DataFrame上;

df = pd.DataFrame(np.random.randn(8,4), columns=['A', 'B', 'C', 'D'])

s = df.iloc[3]

df.append(s, ignore_index=True)
df.T
01234567
A-0.1529641.239888-0.803823-0.6043540.343325-3.3255380.9979501.694225
B-0.7098870.3199570.3075020.5834050.1704320.1572470.0879033.263398
C-2.3900291.2918620.472967-0.945514-1.3494930.1458080.4075730.458573
D-0.1173962.008384-1.1849140.0126781.2866180.3993341.3056970.027644

七、 分组

group by操作:

  • splitting: 按照规则将数据分为不同的组;
  • Applying: 对于每组数据分别执行一个函数;
  • Combining: 将结果组合到一个数据结构中;
df = pd.DataFrame({
    'A':['foo', 'bar', 'foo', 'bar',
      'foo', 'bar', 'foo', 'bar'], 
    'B':['one','one', 'two', 'three',
         'two','two', 'one', 'three'],
    'C': np.random.randn(8), 
    'D':np.random.randn(8)
    })

df
ABCD
0fooone0.602525-0.729163
1barone-0.6510760.104687
2footwo2.2894750.279368
3barthree0.3486430.647659
4footwo-0.8068900.035457
5bartwo0.4526401.805835
6fooone-1.363260-0.247901
7barthree-0.6809330.367421


# 1. 分组对每个分组执行sum函数:
df.groupby('A').sum()
CD
A
bar-0.5307262.925602
foo0.721851-0.662239


# 2. 通过多个列进行分组形成一个层次索引,然后执行函数;
df.groupby(['A', 'B']).sum()
CD
AB
barone-0.6510760.104687
three-0.3322901.015080
two0.4526401.805835
fooone-0.760735-0.977064
two1.4825850.314825

八、 改变形状

Stack

myt = [
    ['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux'],
    ['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']
    ]
tuples = list(zip(*myt))

index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])

df = pd.DataFrame(np.random.randn(8,2), index=index, columns=['A', 'B'])

df2 = df[:4]


stacked = df2.stack()
stacked
运行结果如下:

    first  second   
    bar    one     A    0.031757
                   B    0.426813
           two     A    0.276267
                   B    0.560446
    baz    one     A    0.552757
                   B    1.805644
           two     A   -1.092327
                   B   -0.539023
    dtype: float64
stacked.unstack()
AB
firstsecond
barone0.0317570.426813
two0.2762670.560446
bazone0.5527571.805644
two-1.092327-0.539023
stacked.unstack(1)
secondonetwo
first
barA0.0317570.276267
B0.4268130.560446
bazA0.552757-1.092327
B1.805644-0.539023
stacked.unstack(0)
firstbarbaz
second
oneA0.0317570.552757
B0.4268131.805644
twoA0.276267-1.092327
B0.560446-0.539023

数据透视表

df = pd.DataFrame({
    'A' : ['one', 'one', 'two', 'three']*3, 
    'B' : ['A', 'B', 'C']*4,
    'C' : ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 2,
    'D' : np.random.randn(12), 
    'E' : np.random.randn(12)
})


print df
# 根据上面数据生成透视表
pd.pivot_table(df, values='D', index=['A', 'B'], columns=['C'])
运行结果如下:
            A  B    C         D         E
    0     one  A  foo -0.382358  0.975949
    1     one  B  foo -1.588232  1.168863
    2     two  C  foo  1.286834  0.836279
    3   three  A  bar  1.375826 -1.049638
    4     one  B  bar  0.179641  0.714552
    5     one  C  bar -0.912443  0.474539
    6     two  A  foo -0.010076 -0.750666
    7   three  B  foo -0.766371  0.048745
    8     one  C  foo -1.100770  0.879633
    9     one  A  bar  2.462341  1.761222
    10    two  B  bar  1.239756  0.514073
    11  three  C  bar -0.480783 -0.268171
Cbarfoo
AB
oneA2.462341-0.382358
B0.179641-1.588232
C-0.912443-1.100770
threeA1.375826NaN
BNaN-0.766371
C-0.480783NaN
twoANaN-0.010076
B1.239756NaN
CNaN1.286834

九、 时间序列

pandas在对频率转换进行重新采样时拥有简单,强大且高效的功能(如将按秒采样的数据转换为按5分钟为单位进行采样的数据),这种操作在金融领域非常常见.

rng = pd.date_range('1/1/2017', periods=100, freq='S')
ts = pd.Series(np.random.randint(0, 500, len(rng)), index=rng)  
ts.resample('5Min').sum()
运行结果如下:
    2017-01-01    24929
    Freq: 5T, dtype: int64

9-1、 时区表示

rng = pd.date_range('3/6/2017 00:00', periods=5, freq='D')
ts = pd.Series(np.random.randn(len(rng)), rng)

ts_utc = ts.tz_localize('UTC')
ts_utc
运行结果如下:

    2017-03-06 00:00:00+00:00   -0.406935
    2017-03-07 00:00:00+00:00   -2.059444
    2017-03-08 00:00:00+00:00    0.375662
    2017-03-09 00:00:00+00:00    1.167948
    2017-03-10 00:00:00+00:00    0.927164
    Freq: D, dtype: float64

9-2、 时区转换

ts_utc.tz_convert('Asia/Shanghai')
运行结果如下:
    2017-03-06 08:00:00+08:00   -0.406935
    2017-03-07 08:00:00+08:00   -2.059444
    2017-03-08 08:00:00+08:00    0.375662
    2017-03-09 08:00:00+08:00    1.167948
    2017-03-10 08:00:00+08:00    0.927164
    Freq: D, dtype: float64

9-3、 时间跨度转换

rng = pd.date_range('1/1/2012', periods=5, freq='M')
ts = pd.Series(np.random.randn(len(rng)), index=rng)

ps = ts.to_period()
ps.to_timestamp()
运行结果如下:
    2012-01-01   -0.213930
    2012-02-01    0.974707
    2012-03-01   -1.206153
    2012-04-01   -0.935241
    2012-05-01    0.669691
    Freq: MS, dtype: float64

9-4、 时间和时间戳的转换

prng = pd.period_range('1990Q1', '2000Q4', freq='Q-NOV')
ts = pd.Series(np.random.randn(len(prng)), prng)

ts.index = (prng.asfreq('M', 'e') + 1).asfreq('H', 'S') + 9

# 列出前5行数据
ts.head()
运行结果如下:
    1990-03-01 09:00    0.388727
    1990-06-01 09:00    0.389497
    1990-09-01 09:00    0.563586
    1990-12-01 09:00    1.044088
    1991-03-01 09:00   -1.392586
    Freq: H, dtype: float64

十、 Categorical

pandas可以在DataFrame中支持Categorical类型的数据。

df = pd.DataFrame({
    "id" : range(1,7), 
    "raw_grade" : ['a', 'b', 'b', 'a', 'a', 'e']    
})

10-1、转换数据类型

# 将原始的grade转换为Categorical数据类型

df["grade"] = df["raw_grade"].astype('category')
df['grade']
运行结果如下:
    0    a
    1    b
    2    b
    3    a
    4    a
    5    e
    Name: grade, dtype: category
    Categories (3, object): [a, b, e]

10-2、 对Categroical类型数据重命名

df["grade"].cat.categories = ['very good', 'good', 'very bad']
df
idraw_gradegrade
01avery good
12bgood
23bgood
34avery good
45avery good
56every bad

10-3、 对类别排序

df["grde"] = df['grade'].cat.set_categories(['very bad', 'bad', 'medium', 'good', 'very good'])
df['grade']
运行结果如下:
    0    very good
    1         good
    2         good
    3    very good
    4    very good
    5     very bad
    Name: grade, dtype: category
    Categories (3, object): [very good, good, very bad]

10-4、 按照Categorical的顺序排序

df.sort_values(by='grade')
idraw_gradegradegrde
01avery goodvery good
34avery goodvery good
45avery goodvery good
12bgoodgood
23bgoodgood
56every badvery bad

10-5、 对Categorical列进行统计排序

df.groupby('grade').size()

运行结果如下:

    grade
    very good    3
    good         2
    very bad     1
    dtype: int64

十一、 画图

ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000))
ts.cumsum()
ts.plot()
<matplotlib.axes.AxesSubplot at 0x63edb90>
# 对于DataFrame来说,plot是一种将所有列及其标签进行绘制的简便方法;

df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index, columns=['A', 'B', 'C', 'D'])
df = df.cumsum()
plt.figure()
df.plot()
plt.legend(loc='best')
<matplotlib.legend.Legend at 0x70c2950>

十二、 导入和保存数据

12-1、 CSV数据

# 1. 写入csv文件
df.to_csv('foo.csv')

# 2. 从csv文件中读取数据
pd.read_csv('foo.csv')

12-2、 HDF5存储

# 1. 写入HDF5存储;
df.to_hdf('foo.h5', 'df')


# 2. 从HDF5存储中读取;
pd.read_hdf('foo.h5', 'df')

12-3、 Excel存储

# 1. 写入excel文件
df.to_excel('foo.xlsx', sheet_name='foo1')

# 2. 从excel中读取
pd.read_excel('foo.xlsx', 'foo1', index_col=None, na_values=['NA'])
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值