046基于深度学习的杂草检测

本文介绍了基于深度学习的杂草检测技术,通过卷积神经网络(CNN)如AlexNet、GoogleNet、VGG、ResNet、MobileNet、ShuffleNet、EfficientNet和Swin Transformer等模型进行图像识别。这些模型在解决深度学习退化问题、提高计算效率和准确率方面各有特点,适合不同计算资源和应用场景。同时,还提及了目标检测(yolo系列、faster_rcnn等)和图像分割(Unet、mask-rcnn等)的相关模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

视频演示找046期:

到此一游7758258的个人空间_哔哩哔哩_bilibili

效果展示图如下:

 代码文件展示如下:

运行01makeTxt.py可以读取图片路径保存再txt文本中,

运行02train.py可以对txt文本中的图片路径读取并训练模型,

运行04pyqt界面.py可以生成一个可视化的界面,通过点击加载感兴趣的图识别。

科普下卷积神经网络相关知识:

CNN是卷积神经网络(Convolutional Neural Network)的缩写。它是一种前馈神经网络,特别适用于处理具有网格状结构的数据,例如图像、视频和声音等。CNN由多个卷积层、池化层和全连

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值