离线学习

本文介绍了神经网络的离线学习方法,特别是在FPGA上的应用。通过对神经网络结构和权值的固定设计,实现了对特定问题的处理。以函数逼近为例,通过反向传播算法进行训练,展示了隐藏层神经元数量对逼近误差的影响,最终确定了10个神经元的隐藏层可以达到理想的逼近性能。
摘要由CSDN通过智能技术生成

原本这一篇是在介绍神经网络离线学习的研究结果的,不久前有人指出这里面存在的一些小问题,我重新整理了一遍,下面就是我重新整理过后的内容,如果有其他疑问的话,可以找我联系,想要学习的可以来看一下。

最近在做和FPGA神经网络有关的研究,研究有了大概的结果,设计的神经网络终于完成了离线学习,我们今天的目的就是展示神经网络的离线学习结果,所以这里对神经网络就不做过多介绍,先简单介绍一下神经网络的学习方法吧。

任何一个神经网络要实现某种功能必须先对它进行训练,让它学会他要做的事情,而学习过程实际上就是对网络权值的调整过程。学习完毕,网络连接权值也调整完毕,学习到的知识就分布记忆(存储)在网络中的各个连接权上。

神经网络的学习方法一般分为三类:有指导的学习,无指导的学习和灌输式学习。

1.有指导的学习:

有知道的学习是指在网络的学习过程中,对于网络的学习结果,即网络输出的正确性必须要有一个评价标准。这就要求在学习训练过程中,不断的为网络提供输入模式和期望输出模式对,网络将根据实际输出与期望输出的比较结果,判断差错的方向和大小,决定连接权值的调整方法,以使网络的实际输出结果接近期望输出结果。

2.无指导的学习:

无指导的学习是指在网络的学习过程中,没有来自外部的关于正确性评价的标准。这就需要在训练过程中不断的为网络提供动态输入信息,是的网络能够根据其特有的网络结构和学习规则,寻找可能存在的模式和规律,对属于同一类的模式进行自动分类,并同时根据网络的功能输出和输入信息自主的调整连接权值。

3.灌输式的学习:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值