np.newaxis

本文详细介绍了如何使用NumPy的np.newaxis进行数组维度的扩展,包括从一维到二维,甚至更高维度的转换方法。通过具体代码示例,展示了np.newaxis在不同场景下的应用,帮助读者理解和掌握NumPy数组操作的高级技巧。
摘要由CSDN通过智能技术生成
  x1 = np.array([1, 2, 3, 4, 5])
    # the shape of x1 is (5,)
    x1_new = x1[:, np.newaxis]
    # now, the shape of x1_new is (5, 1)
    # array([[1],
    #        [2],
    #        [3],
    #        [4],
    #        [5]])
    x1_new = x1[np.newaxis,:]	
	# now, the shape of x1_new is (1, 5)
   # array([[1, 2, 3, 4, 5]])

再来一个例子

    In [124]: arr = np.arange(5*5).reshape(5,5)
    
    In [125]: arr.shape
    Out[125]: (5, 5)

# promoting 2D array to a 5D array
In [126]: arr_5D = arr[np.newaxis, ..., np.newaxis, np.newaxis]

In [127]: arr_5D.shape
Out[127]: (1, 5, 5, 1, 1)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值