<<AI入门(10)>>(C)

  我们来讲讲高级求解技术: 1.规则演绎系统: 我们用if-then规则来求解问题: IF if1 if2 if3 ... THEN then1 then2 then3 ... 如果then后面是新断言,那么称为规则演绎系统,如果then后面是用于规定动作我们称为反应式系统. 我们说说规则演绎系统,通常我们把规则演绎系统中每个if为前项,每个then为后项.从前项向后项推理 的过程叫做正向推理,反之叫做逆向推理.正向推理是从事实或状况向目标活动作进行操作. 我们通常把事实表示为非蕴含形式的与或形.例如:对于事实表达式: (倒E u)(/-/ v){Q(v,u)//~[(R(v)//P(v)))//S(u,v)]} 可化成: Q(v,A)//{[~R(v)//~P(v)]//~S(v,A)} 先举个简单的推理的例子: 事实:A//B 规则: A=&amp;gt;C//D , B=&amp;gt;E//G 目标: C//G 把规则化成子句形得: ~A//C,~A//D ~B//E,~B//G 目标的否定的子句形为: ~C,~G 我们用消解反演来证明目标公式: ~A//C ~C ~G ~B//G / / / / / / / / A//B ~A ~B / / / / / / B / / ---------------- NIL 我们推出了一个空子句,目标得到证明. 
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
TensorFlow是一个开源的人工智能框架,由Google公司开发,用于构建和训练机器学习模型。TensorFlow提供了各种各样的API和工具,使得开发人员能够轻松地构建、测试和优化自定义的深度学习算法。 以下是一个简单的TensorFlow入门教程: 1. 安装TensorFlow 首先,您需要安装TensorFlow。可以使用pip或conda进行安装。以下是pip安装的示例: ``` pip install tensorflow ``` 2. 导入TensorFlow 在Python代码中,您需要导入TensorFlow库,如下所示: ``` import tensorflow as tf ``` 3. 定义计算图 在TensorFlow中,您需要定义一个计算图来执行操作。计算图是一系列操作和数据流的集合。以下是一个简单的计算图: ``` a = tf.constant(5) b = tf.constant(2) c = tf.multiply(a, b) ``` 在上面的代码中,我们定义了两个常量a和b,并将它们相乘,结果存储在变量c中。 4. 运行计算图 要运行计算图,您需要使用TensorFlow会话。会话是一个TensorFlow运行环境,它负责计算图的执行。以下是一个简单的会话: ``` with tf.Session() as sess: result = sess.run(c) print(result) ``` 在上面的代码中,我们创建了一个会话,并运行了计算图。结果将打印为10,因为5乘以2等于10。 5. 优化计算图 在TensorFlow中,您可以优化计算图以提高性能。以下是一个简单的优化示例: ``` a = tf.placeholder(tf.float32) b = tf.placeholder(tf.float32) c = tf.multiply(a, b) ``` 在上面的代码中,我们使用了占位符来定义a和b。占位符是一个特殊的节点,它允许您将数据传递到计算图中,而不是在计算图中定义它们。 6. 训练模型 TensorFlow还提供了各种各样的工具和API,使得训练机器学习模型变得容易。以下是一个简单的训练示例: ``` x_data = [1, 2, 3, 4, 5] y_data = [5, 8, 11, 14, 17] w = tf.Variable(tf.random_uniform([1], -1.0, 1.0)) b = tf.Variable(tf.zeros([1])) y = w * x_data + b loss = tf.reduce_mean(tf.square(y - y_data)) optimizer = tf.train.GradientDescentOptimizer(0.1) train = optimizer.minimize(loss) init = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init) for i in range(1000): sess.run(train) if i % 100 == 0: print(i, sess.run(w), sess.run(b)) print(sess.run(w), sess.run(b)) ``` 在上面的代码中,我们定义了一个线性回归模型,并使用梯度下降优化器来训练它。在训练过程中,我们将权重和偏置打印到控制台,以便我们可以观察到它们如何变化。在训练完成后,我们将打印最终权重和偏置。 这只是TensorFlow的一个简单入门教程。TensorFlow提供了各种各样的API和工具,以满足各种不同的机器学习和深度学习需求。如果您想深入了解TensorFlow,请参阅官方文档和示例代码。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

蝈蝈俊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值