安装英伟达驱动 560.94、配置 CUDA12.4、安装 Conda 环境及配置 PyTorch2.5.0

安装英伟达驱动、配置 CUDA、安装 Conda 环境及配置 PyTorch

tips:防止环境配置出错的办法就是一比一版本安装
参考链接:https://blog.csdn.net/zslefour/article/details/143441087
清华源:https://pypi.tuna.tsinghua.edu.cn/simple/torchvision/
离线文件百度网盘:通过网盘分享的文件:nvidia_torch_env
链接: https://pan.baidu.com/s/1irBLVDIRyitgET9D5e-2YA?pwd=fqyr 提取码: fqyr

1. 安装英伟达驱动

版本

  • NVIDIA Driver: 560.94

安装步骤

  1. 访问 NVIDIA 官方网站,下载与你显卡兼容的驱动程序。
  2. 按照安装向导完成驱动程序的安装。

验证驱动安装

  1. 打开“NVIDIA 控制面板”(右键点击桌面空白处,选择“NVIDIA 控制面板”)。
  2. 在左侧菜单中选择“系统信息”,查看“驱动版本”是否为 560.94。
  3. 打开命令提示符(CMD),输入以下命令并回车:
    nvidia-smi
    
    如果显示 GPU 信息和驱动版本,则说明驱动安装成功。

2. 配置 CUDA 和 CUDNN

版本

  • CUDA: 12.4.99
  • CUDNN: 8.9.5(与 CUDA 12.4 兼容)

安装步骤

  1. 安装 CUDA

    1. 访问 CUDA 下载页面,选择适合你操作系统的版本。
    2. 按照官方指南完成 CUDA 的安装。
    3. 配置 CUDA 环境变量:
      • 在 Windows 系统中,右键点击“此电脑” -> “属性” -> “高级系统设置” -> “环境变量”。
      • 添加 CUDA_PATH 系统变量,值为 CUDA 的安装路径(例如:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4)。
      • 将 CUDA 的 binlib 文件夹路径添加到 Path 环境变量中。
  2. 安装 CUDNN

    1. 访问 CUDNN 下载页面,选择与 CUDA 12.4 兼容的版本(如 8.9.5)。
    2. 下载 CUDNN 的 .zip 文件并解压。
    3. 将解压后的文件夹中的内容复制到 CUDA 的安装路径中:
      • bin 文件夹中的文件复制到 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\bin
      • include 文件夹中的文件复制到 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\include
      • lib 文件夹中的文件复制到 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\lib

验证 CUDA 和 CUDNN 安装

  1. 验证 CUDA:

    nvcc --version
    

    如果显示 CUDA 编译器版本信息,则说明 CUDA 安装成功。

  2. 验证 CUDNN:

    • 打开命令提示符(CMD),输入以下命令:
      nvidia-smi
      
      如果显示 GPU 信息,则说明 CUDNN 安装成功。
    • 或者,运行以下 Python 代码检查 CUDNN 是否可用:
      import torch
      print(torch.backends.cudnn.is_available())  # 应输出 True
      

3. 安装 Conda 环境

python版本为3.10

安装步骤

  1. 下载并安装 AnacondaMiniconda
  2. 打开终端或命令行工具,创建一个新的 Conda 环境:
    conda create -n pytorch_env python=3.10
    
  3. 激活环境:
    conda activate pytorch_env
    

4. 安装 PyTorch 及相关包

版本

  • PyTorch: 2.5.0+cu124
  • Torchvision: 0.20.0+cu124
  • Torchaudio: 2.5.0+cu124

安装步骤

  1. 使用以下命令安装 PyTorch、Torchvision 和 Torchaudio:

    pip install torch==2.5.0+cu124 torchvision==0.20.0+cu124 torchaudio==2.5.0+cu124 --extra-index-url https://download.pytorch.org/whl/cu124
    
  2. 如果需要手动下载 .whl 文件,可以使用以下链接:

    将文件下载到本地后,使用以下命令安装:

    pip install torchvision-0.20.0+cu124-cp310-cp310-win_amd64.whl
    pip install torchaudio-2.5.0+cu124-cp310-cp310-win_amd64.whl
    

5. 验证安装

  1. 启动 Python,检查 PyTorch 是否成功安装:

    import torch
    print(torch.__version__)  # 应输出 2.5.0
    print(torch.cuda.is_available())  # 应输出 True
    
  2. 测试 CUDA 和 CUDNN 是否正常工作:

    import torch
    x = torch.randn(3, 3).cuda()
    print(x)
    print(torch.backends.cudnn.is_available())  # 应输出 True
    

以上步骤完成后,你应该已经成功安装了 NVIDIA 驱动、配置了 CUDA 和 CUDNN,创建了 Conda 环境,并安装了 PyTorch 及相关包。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值