3入门代码

3.Unity Shader代码部分学习

一.基本结构

Shader "Custom/NewSurfaceShader" //shader名称
{ //属性部分
    Properties {
       //对于初始属性的设置
    }
    //针对显卡A的SubShader
    SubShader {
    
    pass{
        //开始cg语言的编写
        CGPROGRAM
        //编译指令
#pragma vertex vert
     #pragma fragment frag

    }
        ENDCG
}


   SubShader {//对于显卡B的渲染状态的编写 
   、、、、、、、、
    }

    FallBack "Diffuse"//如果都失败用于回调
}

二.例子

Shader "Unity/test1"
{
SubShader
{
Pass
{
CGPROGRAM
#pragma vertex vert
#pragma fragment frag
float4 vert(float4 v :POSITION) : SV_POSITION
{
return UnityObjectToClipPos(v);//原型是mul(UNITY_MARTRIX_MVP,v),即对于v进行逻辑处理
}
Vert定义为float4类型,输入的v就是float4类型,对v进行处理得到的也是float4类型,可以return

fixed4 frag() : SV_Target{
return fixed4(1.0,1.0,1.0,1.0);//一开始由于fixed4没有写4,效果不对
}

Frag函数,定义类型为fixed4,则返回值为fixed4,以书为主,inout等少用
ENDCG
}
}
} 

//现存问题,mul(UNITY_MATRIX_MVP,)’ with 'UnityObjectToClipPos()可以为等价,但意义是什么,可能在以后有答案

内容概要:本文档详细介绍了一个利用Matlab实现Transformer-Adaboost结合的时间序列预测项目实例。项目涵盖Transformer架构的时间序列特征提取与建模,Adaboost集成方法用于增强预测性能,以及详细的模型设计思路、训练、评估过程和最终的GUI可视化。整个项目强调数据预处理、窗口化操作、模型训练及其优化(包括正则化、早停等手段)、模型融合策略和技术部署,如GPU加速等,并展示了通过多个评估指标衡量预测效果。此外,还提出了未来的改进建议和发展方向,涵盖了多层次集成学习、智能决策支持、自动化超参数调整等多个方面。最后部分阐述了在金融预测、销售数据预测等领域中的广泛应用可能性。 适合人群:具有一定编程经验的研发人员,尤其对时间序列预测感兴趣的研究者和技术从业者。 使用场景及目标:该项目适用于需要进行高质量时间序列预测的企业或机构,比如金融机构、能源供应商和服务商、电子商务公司。目标包括但不限于金融市场的波动性预测、电力负荷预估和库存管理。该系统可以部署到各类平台,如Linux服务器集群或云计算环境,为用户提供实时准确的预测服务,并支持扩展以满足更高频率的数据吞吐量需求。 其他说明:此文档不仅包含了丰富的理论分析,还有大量实用的操作指南,从项目构思到具体的代码片段都有详细记录,使用户能够轻松复制并改进这一时间序列预测方案。文中提供的完整代码和详细的注释有助于加速学习进程,并激发更多创新想法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值