CNN中.view()和.shape()用法总结

.shape用法

在CNN中,我们在接入全连接层的时候,我们需要将提取出的特征图进行铺平,将特征图转换为一维向量。
这时候我们用到.view做一个resize的功能,用.shape来进行选择通道数。

我现在先说括号里的.shape()。
.shape()和.size()用法有点类似。
.shape[0]和.size(0)都是提取一维参量。
比如,
CNN特征图feature最终输出为(50,16,4,4)(B,C,H,W)
那么.shape[0]和.size(0)就是提取50(batch_size)这个数据。

.view()用法

比如,

a=torch.Tensor([[[1,2,3],[4,5,6]]])
b=torch.Tensor([1,2,3,4,5,6])

print(a.view(1,6))
print(b.view(1,6))

得到的结果都是tensor([[1., 2., 3., 4., 5., 6.]])

a=torch.Tensor([[[1,2,3],[4,5,6]]])
print(a.view(3,2))

得到结果:tensor([[1., 2.],[3., 4.],[5., 6.]])

参数中的-1就代表这个位置由其他位置的数字来推断,只要在不致歧义的情况的下,view参数就可以推断出来,也就是人可以推断出形状的情况下,view函数也可以推断出来。比如a tensor的数据个数是6个,如果view(1,-1),我们就可以根据tensor的元素个数推断出-1代表6。

关于output = self.fc(feature.view(img.shape[0], -1))

就是子啊fc全连接之前,
比如最终生成(50,16,4,4)的特征图
我们将16张7*7特征图铺平为一个一维向量。因为batch_size设置为50. 那么img.shape[0]=50。
我们就生成了50 个 一位向量。输进全连接层。

  • 19
    点赞
  • 64
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: CNN(卷积神经网络)是一种深度学习模型,可以用于图像分类、语音识别、文本分析等任务。 在使用 Python 实现 CNN 时,你需要准备好一些图像数据以及所要使用的 CNN 模型。这些数据和模型可以使用多种方式加载,例如从文件加载、使用 Python 库加载(例如,使用 TensorFlow、PyTorch 或 Keras),或者手动定义。 然后,你可以使用 Python 的各种深度学习库(例如 TensorFlow、PyTorch 或 Keras)的 API 来构建 CNN 模型。这些 API 提供了灵活的模型构建和训练功能,允许你定义卷积层、池化层、全连接层等模型组件,并使用不同的优化器和损失函数进行训练。 最后,你可以使用 CNN 模型来进行预测,并使用各种评估指标来评估模型的性能。例如,对于图像分类任务,你可以使用准确率、召回率、F1 分数等指标来评估模型的表现。 总的来说,使用 Python 实现 CNN 需要准备好数据、构建 CNN 模型、训练模型并进行预测,并使用合适的评估指标来评估 ### 回答2: 使用Python实现CNN(卷积神经网络)的关键步骤如下: 1. 数据准备:从数据集加载并准备训练和测试数据。可以使用`torchvision`库的`datasets`模块加载常用的数据集,如MNIST或CIFAR-10,也可以自己创建和准备数据集。 2. 数据预处理:对加载的数据进行预处理,使其适合CNN的输入。常见的预处理方法包括归一化、调整大小和转换为张量等。可以使用`torchvision`提供的`transforms`模块执行这些操作。 3. 构建CNN模型:使用PyTorch的`nn`模块来构建CNN模型。根据具体需求,可以选择添加卷积层、池化层和全连接层等。 4. 定义损失函数和优化器:选择适当的损失函数(如交叉熵损失)和优化器(如随机梯度下降SGD)来训练CNN模型。PyTorch提供了各种损失函数和优化器的实现。 5. 训练模型:使用训练数据对CNN模型进行训练。定义训练循环,在每个批次执行前向传播、计算损失、反向传播和参数更新等操作。 6. 模型评估:使用测试数据评估CNN模型的性能。在测试集上进行模型验证,计算准确率、精确率和召回率等指标来评估模型的性能和效果。 7. 参数调优:根据模型表现和需求,调整CNN模型的超参数(如学习率、卷积核大小等)和网络结构,以获得更好的性能。 8. 预测和应用:使用经过训练的CNN模型进行预测和应用。将新的输入数据传递给模型进行预测,并根据预测结果进行相关的应用。 以上是使用Python实现CNN的一般步骤,可以根据具体的问题和需求进行相应的调整和扩展。同时,借助于PyTorch深度学习框架,实现CNN的过程相对简化和高效。 ### 回答3: 要使用Python实现卷积神经网络CNN),可以使用深度学习框架如TensorFlow或PyTorch。 首先,我们需要导入所需的库。对于TensorFlow,可以使用以下代码导入所需的库: ```python import tensorflow as tf from tensorflow.keras import datasets, layers, models ``` 对于PyTorch,可以使用以下代码导入所需的库: ```python import torch import torch.nn as nn import torch.optim as optim ``` 接下来,我们需要定义CNN的模型。对于TensorFlow,可以使用以下代码定义一个简单的CNN模型: ```python model = models.Sequential() model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3))) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Conv2D(64, (3, 3), activation='relu')) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Conv2D(64, (3, 3), activation='relu')) model.add(layers.Flatten()) model.add(layers.Dense(64, activation='relu')) model.add(layers.Dense(10)) ``` 对于PyTorch,可以使用以下代码定义一个简单的CNN模型: ```python class SimpleCNN(nn.Module): def __init__(self): super(SimpleCNN, self).__init__() self.conv1 = nn.Conv2d(3, 32, 3) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(32, 64, 3) self.fc1 = nn.Linear(64 * 6 * 6, 64) self.fc2 = nn.Linear(64, 10) def forward(self, x): x = self.pool(nn.functional.relu(self.conv1(x))) x = self.pool(nn.functional.relu(self.conv2(x))) x = x.view(-1, 64 * 6 * 6) x = nn.functional.relu(self.fc1(x)) x = self.fc2(x) return x model = SimpleCNN() ``` 然后,我们需要加载数据集并进行训练。对于TensorFlow,可以使用以下代码加载CIFAR-10数据集并进行训练: ```python (train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data() train_images, test_images = train_images / 255.0, test_images / 255.0 model.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy']) model.fit(train_images, train_labels, epochs=10, validation_data=(test_images, test_labels)) ``` 对于PyTorch,可以使用以下代码加载CIFAR-10数据集并进行训练: ```python transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) trainset = datasets.CIFAR10(root='./data', train=True, download=True, transform=transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=4, shuffle=True, num_workers=2) testset = datasets.CIFAR10(root='./data', train=False, download=True, transform=transform) testloader = torch.utils.data.DataLoader(testset, batch_size=4, shuffle=False, num_workers=2) criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9) for epoch in range(10): running_loss = 0.0 for i, data in enumerate(trainloader, 0): inputs, labels = data optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() if i % 2000 == 1999: print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 2000)) running_loss = 0.0 ``` 通过使用这些步骤,您可以使用Python实现卷积神经网络。请注意,这只是一个简单的示例,您可以根据自己的需求和数据集进行相应的修改和扩展。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值