前言
滤波器广泛用于放大器、振荡器,为电路提供所需的频率信号。
无源滤波器使用 L-R 或 C-R 就可以构成,区别是 L-R 与 C-R 的位置会发生对换:
图1 无源低通与高通滤波器
本文以左下角的“CR高通滤波器”为例,从阻抗角度分析,帮助理解滤波器如何工作。
滤波器如何工作?
将“CR高通滤波器”的电路重新绘制如下,旁边标注电容的阻抗公式与曲线:
图2 CR 高通滤波器及电容阻抗
从阻抗角度,电阻在任何频率下阻值都是恒定的,但是电容对电流的阻碍,即容抗 Xc,与信号频率呈倒数关系,在信号低频时比在高频时阻值更大。
电阻 R 上的电压作为输出信号,基于分压原理:
- 在信号低频时,Xc 相对 R 较大, R 的电压份额小于 C 的份额,信号发生衰减。
- 在信号高频时,Xc 相对 R 较小, R 的电压份额大于 C 的份额,信号可以通过。
如果信号由低频向高频逐渐变化,其中有一个截止频率,对应是输出信号为峰值(全部通过)时候的 0.707 倍,即 -3dB 衰减的时候:
图3 高通滤波器截止频率(Cutoff)
上述是基于阻抗大小的定性描述,我们下面举一个带有参数的例子,具体计