理解ADC:Delta-Sigma ADC 如何工作?

前言

Delta-Sigma ADC ,也有称为 Sigma-Delta ADC、ΔΣ ADC、ΣΔ ADC。

Delta-Sigma ADC 的应用非常广泛,特别是对于低频、高分辨率的信号处理场景,我们可能在不经意之间就使用到了 Delta-Sigma ADC,比如音频 Codec、生理监测、环境/过程控制,还有树莓派扩展板 “ADC Pi” 中的 MCP3424 也是一颗 Delta-Sigma ADC。

然而,相比于 SAR ADC, Delta-Sigma ADC 的工作原理有点令人费解,今天就尝试为大家介绍一下。


Delta-Sigma ADC 框图

在 TI 的应用笔记 “How delta-sigma ADCs work, Part 1” (详见参考资料 [1])中给出了这类 ADC 的框图:

图1 Delta-Sigma ADC 框图,来源 [1]

它由两部分组成,ΔΣ 调制器 与 数字/抽取滤波器:

  • ΔΣ 调制器:是一种调制器,将模拟信号调制成频率很高的 1 bit 数字信号,很多芯片手册里提到的 过采样(Oversampling)和 噪声整形(Noise shaping)就发生在这里。
  • 数字/抽取滤波器:数字滤波器是为了去除目标信号以外的频谱成份,而抽取滤波器是为了将输出数据降低到合适的速率。

我们在此主要看 ΔΣ 调制器,因为它是这类 ADC 的基础。


ΔΣ 调制器

在 TI 文中提供了“1 bit 一阶 ΔΣ 调制器”的示意图,它由微分器(Difference Amplifier)、积分器(Integrator)、比较器(Comparator)、DAC 组成:

图2 一阶 ΔΣ 调制器,来源 [1]

其中:

  • 对于 1 bit 的 ΔΣ 调制器,每次量化结果只有二进制 “1” 或 “0” 的 1 bit;
  • DAC 也是 1 bit ,量化结果经 DAC 反馈到输入端,与输入信号相减,两者之差就是量化误差,体现的是 “Delta” 的部分;
  • 积分器累积量化误差,因为是一阶的,只记录过去 1 个延时单位,累积后送到比较器,体现的是 “Sigma” 的部分;
  • 比较器相当于 1 bit 的 ADC,如果量化误差大于参考值,输出二进制的 “1” ,反之输出二进制的 “0” 。

这套系统以高频时钟运作,多次的量化结果输出一连串的二进制码流,每个码的速率是固定的。


时域表示

我发现在 ADI 的一个在线教程中(详见参考资料 [2]),提供了上述系统运作的单步骤运作演示,你可以打开网页尝试一下,一步步点击“Next Step”查看结果,如下是 Vin = 1.0V 的例子截图:

图3 ΔΣ 调制器 单步骤演示,来源 [2]

图中,DAC 的参考电压 Vref = 2.5V,当量化结果为 “1” 时,DAC = 2.5V;当量化结果为 “0” 时,DAC = -2.5V;这意味着输入信号的幅度范围可以是 -2.5V 至 +2.5V( +/- Vref )。

此时,对于输入信号 Vin = 1.0V ,显示了前 30 个量化结果,分别为:1、0、1、1、1、0、1、1、0、1、1、0、1、1、1、0、1、1、0、1、1、0、1、1、1、0、1、1、0、1。

那么,这些量化结果是如何表示 Vin 呢?

重点来了,是用密度。在上述 30 个量化结果中有 21 个 “1”,说明输入信号是满量程的 21/30 = 70%,即:-2.5 + ( 2.5 *2 ) * 70% = 1V 。注意,是从底部 -Vref 开始算起的。

又因为是纯粹数字化的步骤运算,很容易用 Excel 表格来模拟,比如以下是我用 Excel 模拟上述 Vin = 1.0V 的例子,前 30 个输出结果(Camparator Out 列)与网页是一致的,右侧的波形图分别是 Vin (蓝色波形)和 DAC 输出(橙色波形),并且,Excel 下侧的状态栏显示 Average 是 0.7 (字比较小):

图4 Excel 模拟 ΔΣ 调制器过程,输入为直流信号

那么,如果将 Vin 改为正弦波,会得到怎么样的结果?

再次用 Excel 表格模拟如下,右侧波形图分别是 Vin (蓝色波形)和 DAC 输出(橙色波形):

图5 Excel 模拟 ΔΣ 调制器过程,输入为正弦信号

可以看出,对于 1 bit 一阶 ΔΣ 调制器,它就像是 脉冲密度调制 PDM(Pulse Density Modulation),在输入信号的幅度越接近 +Vref 时,用越多 “1” 表示,在输入信号的幅度越接近 -Vref 时,用越多 “0” 表示。

WiKi百科上还列举了 这种“1 bit 一阶 ΔΣ 调制器” 的公式,推算出图2 中 Yi 与 Xi 的关系,以及 Python 代码实现,有兴趣可以参阅(详见参考资料 [3])。


频域表示

回到 TI 的文章(详见参考资料 [1])中,后续讲述的是这套 ΔΣ 调制器系统的频谱特性,它能将量化噪声的频谱成分推向高频区域:

图6 ΔΣ 调制器的频谱特性,来源 [1]

并阐述了不同阶数情况下的转移函数,以及对应的频谱特性:

图7 ΔΣ 调制器不同阶数的频谱特性,来源 [1]

可以看到阶数越大(与过往更多数据有关),量化噪声越集中于高频区域,这就是所谓的噪声整形 Noise shaping。经过后续滤波,能过滤除噪声,有利于目标信号频谱区域内的信噪比。


小结

本文介绍了 Delta-Sigma ADC 中的 ΔΣ 调制器,通过 ADI 的在线演示(参考资料 [2])或自行编写 Excel 能够模拟 “1 bit 一阶 ΔΣ 调制器” 的运作过程,对于这种调制器,其量化结果与 PDM 脉冲密度调制 类似(参考资料 [3])。

关于 Delta-Sigma ADC 的详细介绍,可以查看 TI 的 slyt423a 和 slyt438(参考资料 [1] 和 [4]),其中讲述了过采样、噪声整形、数字/抽样滤波等内容。


参考资料

参考资料均可以通过搜索关键词获取,查阅原文:

  1. slyt423a: How delta-sigma ADCs work, Part 1
  2. https://www.analog.com/en/resources/interactive-design-tools/sigma-delta-adc-tutorial.html
  3. https://en.wikipedia.org/wiki/Pulse-density_modulation
  4. slyt438: How delta-sigma ADCs work, Part 2

欢迎关注我的微信公众号“疯狂的运放”,及时收到最新的推文。

### Delta-Sigma ADC 的基本原理 Delta-Sigma ADC 是一种基于过采样和噪声整形技术的模数转换器,其核心在于将输入信号中的量化噪声转移到更高频率范围,从而实现高分辨率的数据输出。这种转换器通常由一个过采样调制器以及后续的数字抽取滤波器构成[^3]。 #### 过采样与噪声整形 Delta-Sigma 调制器通过显著提升采样率的方式降低量化噪声的影响。具体而言,在高频区域集中更多的量化噪声能量,而低频区域保留原始信号的能量分布。这种方法被称为 **噪声整形** 技术。经过噪声整形后的信号随后被送入抽取滤波器进行降采样操作,最终得到高精度的结果[^1]。 #### 数学建模分析 为了更清楚地理解 Sigma-Delta ADC 如何减少误差并提高精度,可以考虑如下例子:假设输入电压 \( V_{in} \) 和参考电压 \( V_{ref} \),当放大倍数增加时,计算所得的有效值更加接近真实值。例如: - 初始条件:\( V_{in}=3V, V_{ref}=5V \) - 放大前误差为 2V; - 经过一次放大 (\( n=1024,m=615 \)) 后,误差缩小至约 0.003V; - 若进一步增大放大系数 (\( n=65536,m=39322 \)), 可使误差降至极小水平 (~0.00003V)[^4]。 这表明随着增益参数的选择优化,能够极大地改善系统的性能表现。 ```python def calculate_error(v_in, v_ref, gain_n, gain_m): amplified_vin = gain_n * v_in approximated_vout = gain_m * v_ref / gain_n error = abs(approximated_vout - v_in) return error # Example Usage error_1st_stage = calculate_error(3, 5, 1024, 615) error_2nd_stage = calculate_error(3, 5, 65536, 39322) print(f"First stage error: {error_1st_stage:.5f}") print(f"Second stage error: {error_2nd_stage:.7f}") ``` 运行以上 Python 函数可验证不同阶段下误差变化情况。 --- ### 应用领域 由于具备出色的线性和动态范围特性,Delta-Sigma ADC 广泛应用于多种场合,特别是那些对于精确度有较高需求的地方: - 音频处理设备 – 提供高质量声音录制回放能力; - 工业自动化控制 – 实现精准传感器读取反馈机制; - 科研仪器仪表 – 达成微弱电信号检测目的等. 此外,三阶连续时间型架构因其卓越抗混叠特性和较低功耗特点成为某些特定应用场景下的首选方案之一[^2]. ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

gilbertjuly

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值