信息系统项目管理师考试备考经验和心得(50天一次性通过)

写在毕业入职一年后,以此文纪念一下这一年的工作心路历程。本人参加的是2017年上半年信息系统项目管理师考试,今天看到2017上半年考试的成绩合格分数为45,也算是侥幸通过,在这里写一写自己是如何备考的,供各位考友参考一下。

这里说的50天是指白天上班以业余时间备考所需的时间,由于每个人的情况不一样,大家应视自己情况而定。

我先介绍下自己的情况,我是地理信息系统专业出身,平时从事Web GIS开发工作。由于单位鼓励参加社会化职称评定,因此决定报考该考试。

 

关于信息系统项目管理师考试

由于该考试深度不大,只是考试范围大一些,这就说明所有的知识点只要你有看到,考试的时候就不会手足无措,因此我们必须尽可能保证复习时间。

如何在繁忙的工作中挤时间备考?

有的人会说白天工作很忙,没有时间备考。我先说说如何挤出时间备考,如果你白天的工作允许你看书学习的话,那最好;如果没有这样的条件也没有关系,我们可以自己协调时间:

1.每天上下班花在路上的时间大约1-2小时,这个时间看以将资料放到手机里,可以看一些知识点,也可以看看论文怎么写,记一记九大管理的模板,亦可以背一背九大管理各子过程的输入输出。

2.午休时间至少1小时,可以自己看一看视频教程,跟进学习进度。

3.晚上下班后,推掉不必要的应酬,8点开始学习,12点睡觉,最起码能有3个小时的学习时间。

4.如果白天的工作时间还能挤出1小时的学习,那就更好了。

以此贯彻执行50天,通过该考试肯定是没有问题的。

 

关于教材和培训

官方考试指定的教材(目前已经出了新版),这本书还是需要的,没事的时候可以翻一翻。因为现在网上的资料浩如烟海,其实都大同小异,大家可以根据自己的口味选择一套即可。我看的视频是2015年的视频,大家可以找找距离考试近一些的视频看看,由于核心9大管理的知识点讲解都差不多。电子版资料我会在文末附上下载地址。

关于心态

既然大家都决定参加该考试,也没有必要说为什么考这个证了,我只说2个心态相关的问题:

1.   几乎没有计算机软件基础,能不能参考该考试?

完全可以。网上有很多文科出身的考生可以高分通过该考试,就说明了一切问题。涉及计算机相关的知识点大多集中在上午的选择题,且不超过5分,这5分即使是计算机科班出身的同学也未必能得满分,这5道选择题即使全都填写一样的答案,也能至少得到1分。因此有无计算机基础不是决定考试能否通过的关键因素。

2.遇到困难请不要轻言放弃,请坚持

  这个考试的通过率大约在15%左右,以我参加考试观察来看,你能3场考试坚持答完走出考场,已经击败了50%的选手。再坚持复习50天,是一定拿到证书的。

建立自己的学习体系

建议大家花一段时间,建立体系,摸清项目管理的脉络。9大管理更是重中之重。比如,为什么需要成本管理,什么时候需要对成本进行管理,成本管理和其他管理的关系是什么?管理是一门科学、系统地方法,也是一门艺术,不系统学习,孤立的知识点没有意义。第一遍学习的时候可能会比较迷糊,随着学习的开展和自己不断的思考,相信大家也会找到自己的套路的。

 

练习

每一章学习结束后都尽量做一做相关的习题,这样可以加深印象。

三个科目都要抓

由于该考试属于“单败制”,要求一次性通过三门考试才可以。请大家在基础学习结束后,合理安排三科考试的学习计划,不要出现偏科。还有就是下午案例分析的计算题一定要得全分,尽量不要失分。作文考试只有2个小时,要求写3000字,时间还是很紧张的,作文卷面要保证齐整,这会给监考老师留下一个好印象。稍后我会在文末附上我自己的平时作文练习,书写漂亮的考友可以多给提提意见哈。

关于考前冲刺

临时抱佛脚还是非常重要的。考前冲刺阶段可以做做真题,自己模拟一下考试,掐着时间答题。按照上午选择,下午案例分析和作文的时间进行安排,将自己的思维提前进入到考试状态。

上午选择题

上午选择题涉及知识面很广,有项目管理、软件工程、系统工程、运筹学、网络工程、综合布线、技术经济学,对考生综合知识要求也比较高。这就要求我们平时要好好学习这些。官方指定的教程是没有后面的科目的,在我共享的电子版教程中可以找到。

案例分析

案例分析题大多都是9大管理方面,其中的计算题尽量不要失分。每一种题型都有自己的解题套路,大家还是要看看视频中小马老师是如何分析、解题的,多看几遍,自然就有思路了。下午的案例分析是不准用计算器的,只能笔算,所以大家平时要注意培养一下自己的计算能力。

论文

论文分为摘要和正文。网上有很多模板,大家选一种自己喜欢的模板即可。项目内容结合自己平时的工作背景。高项的论文不难,我个人只准备了1周,不是很充分,所以论文分也不高。希望大家平时多积累,尽可能9大管理各准备,准备充分,尽量拿到高分。要根据考试的题目要求紧扣考点进行作文。

资料里会有空白的格子纸,大家可以打印出来,平时联系用。一是可以练习作文的节奏感;二是可以联系书写。

 

复习资料下载

链接:https://pan.baidu.com/s/1teaQOJF9YTjWaggDsO06EQ

提取码:62f8 

视频解压密码在文件夹内的 .txt中,打开即可查看。

下面是我个人的作文练习,只拍了整体管理和风险管理,模板是差不多的,只是内容不同,这个模板供大家参考。

 

 

风险管理

 

 

如遇到问题,欢迎通过公众号留言给作者,以便共同探讨。

邮箱:thinkingingis@qq.com

微信公众号:

<think>嗯,用户想比较智能终端本地语音识别ASRWhisper的实现差异及性能对比。首先,我需要明确这两者的基本概念应用场景。智能终端本地ASR通常指的是在设备端运行的语音识别系统,比如手机或智能音箱上的语音助手,它们需要在资源受限的环境下实时处理,所以可能采用轻量级模型,比如RNN-T或者经过剪枝、量化的模型。而Whisper是OpenAI开源的模型,参数量更大,可能更注重多语言支持准确率,但需要更多的计算资源,通常运行在服务器端。 接下来,用户可能关心两者的实现方式差异。本地ASR需要虑模型优化技术,比如模型压缩、硬件加速(如NPU或DSP),以及低延迟处理。而Whisper作为云端模型,可能使用Transformer架构,依赖大规模数据训练,支持多种语言任务,但实时性可能不如本地ASR。 性能对比方面,用户可能想知道准确率、延迟、资源消耗、多语言支持等方面的差异。本地ASR在延迟隐私保护上有优势,但准确率可能受限于模型大小;Whisper在复杂场景下准确率更高,但需要网络连接,可能存在延迟问题。 还需要虑用户的实际应用场景,比如是否需要离线功能,对多语言的支持程度,以及对隐私的要求。例如,智能家居设备可能更倾向于本地ASR,而需要高准确率的转录服务可能选择Whisper。 另外,用户可能对技术细节感兴趣,比如模型架构的不同,训练数据的差异,以及如何在实际项目中选择适合的方案。需要解释RNN-TTransformer的区别,以及它们对计算资源的需求。 最后,生成相关问题时,要覆盖实现技术、性能指标、适用场景、优化方法以及整合可能性,帮助用户全面了解两者的区别应用。</think>### 智能终端本地语音识别ASR vs Whisper实现差异及性能对比 #### 一、技术实现差异 1. **架构设计** - **本地ASR**:通常采用轻量级模型(如RNN-T、Transformer的剪枝版本),通过硬件加速(NPU/DSP)实现实时推理。例如,Google Pixel的语音识别使用改进的RNN-T架构,模型大小控制在50MB以内[^1]。 - **Whisper**:基于Transformer架构(参数量1.5B+),支持多任务学习(语音识别+翻译),依赖GPU集群进行训练,推理需要较高算力。 2. **训练数据** - **本地ASR**:聚焦目标语言(如中/英文)的干净语音数据集,常使用数据增强模拟噪声场景。 - **Whisper**:利用68万小时多语言网络音频数据(含低质量样本),覆盖96种语言[^2]。 3. **部署方式** ```cpp // 典型本地ASR实现框架(以TensorFlow Lite为例) auto model = tflite::FlatBufferModel::BuildFromFile("asr_model.tflite"); tflite::ops::builtin::BuiltinOpResolver resolver; std::unique_ptr<Interpreter> interpreter; tflite::InterpreterBuilder(*model, resolver)(&interpreter); interpreter->AllocateTensors(); ``` #### 二、性能对比指标 | 指标 | 本地ASR | Whisper | |---------------|-----------------------|----------------------| | 延迟(RTF) | <0.3x(实时性优先) | >1.5x(精度优先) | | 内存占用 | 50-200MB | >2GB | | 多语言支持 | 1-5种核心语言 | 96种语言 | | 离线可用性 | ✓ | ✗(依赖云端) | | WER(中文) | 8-12% | 5-7% | #### 三、典型应用场景 1. **本地ASR适用场景** - 智能家居设备唤醒词检测(如"Hey Siri") - 车载语音控制系统(低延迟需求) - 医疗设备离线语音指令(隐私保护) 2. **Whisper适用场景** - 跨国会议实时字幕生成 - 播客/视频内容自动转录 - 多语言客服对话分析 #### 四、优化技术对比 $$ \text{模型效率} = \frac{\text{识别准确率}}{\text{能耗} \times \text{内存占用}} $$ 本地ASR通过**量化感知训练**(Quantization-Aware Training)可将模型压缩4倍,例如将浮点32转为int8运算: ```python converter = tf.lite.TFLiteConverter.from_saved_model("asr_model") converter.optimizations = [tf.lite.Optimize.DEFAULT] tflite_quant_model = converter.convert() ``` 而Whisper通过**动态批处理**提升云端吞吐量,支持同时处理100+并发语音流。
评论 113
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值