LongMem 开源项目安装与使用指南
项目概述
LongMem 是一个旨在增强大型语言模型(LLMs)长期记忆能力的框架,通过该框架,模型能够处理和利用更长的历史信息。这个项目是其NeurIPS 2023论文“Augmenting Language Models with Long-Term Memory”的官方实现。它采用了创新的解耦网络架构,保留了原始LLM作为内存编码器,而自适应残差旁路网络则作为内存检索器和读取器,以此来管理并更新长期过去的上下文信息。
目录结构及介绍
以下是LongMem
项目的主要目录结构及其简介:
LongMem
├── data # 数据存放目录,包括原始数据和预处理后数据
│ └── icl # 内容相关数据集
├── eval_scripts # 评估脚本,用于测试模型性能
├── fairseq # 修改后的FairSeq代码库,包含模型定义
│ ├── fairseq/models # 模型定义文件夹,如newgpt.py包含了预训练大模型类
│ ├── fairseq/modules # 包含特定模块实现,例如动态内存与块管理
├── gpt2_bpe # GPT-2的字节对编码相关文件
├── preprocess # 数据预处理脚本
├── train_scripts # 训练脚本,用于进行模型训练
├── .gitignore # Git忽略文件
├── CITATION.cff # 引用该项目的标准格式文件
├── LICENSE # 开源许可协议文件
├── README.md # 项目说明文档
├── requirements.txt # 项目依赖列表
启动文件介绍
在LongMem
中,并没有一个直接的“启动文件”以传统意义上运行整个项目。相反,项目操作分为几个关键步骤,每个步骤可能由不同的脚本执行:
-
训练模型:通过运行位于
train_scripts/train_longmem.sh
的shell脚本开始训练,这通常涉及到调用特定的Python训练程序。 -
评估模型:使用
eval_scripts/eval_longmem_icl.py
脚本评估模型。需要指定模型路径以及可选的预训练模型路径。 -
数据处理:在进行训练或评估之前,需要先使用
preprocess
中的脚本准备数据。
配置文件介绍
尽管项目中没有明确列出单个“配置文件”,但它的配置主要通过命令行参数、环境变量和 FairSeq 中可能的特定配置设置来完成。这些配置覆盖了从环境设置(如PyTorch和Faiss版本)、数据路径到模型训练的具体超参数等多方面。
-
环境配置:您需要根据指引安装必要的依赖项,比如特定版本的PyTorch、Faiss-GPU以及其它依赖,这些配置更多是在安装过程中手动设定。
-
模型与训练配置:配置分布在多个地方,特别是在调用训练脚本时通过命令行参数传递。例如,训练脚本可能允许指定学习率、批次大小等参数。
-
数据预处理:数据处理的配置可能涉及脚本内的参数或外部指定的数据集路径,但这些往往是通过直接修改脚本或按脚本要求提供相应的输入来实现的。
为了具体配置项目,建议直接查阅源码中的示例脚本和文档注释,确保遵循最佳实践,并调整参数以适应您的硬件和实验需求。