Code Alpaca 项目使用指南
codealpaca 项目地址: https://gitcode.com/gh_mirrors/co/codealpaca
1、项目介绍
Code Alpaca 是一个基于 LLaMA 模型的代码生成指令跟随模型。该项目旨在构建和分享一个专门用于代码生成的指令跟随模型。Code Alpaca 完全基于 Stanford Alpaca 项目,仅在训练数据上进行了修改。项目包含以下内容:
- 用于微调模型的 20K 数据集
- 数据生成代码
- 模型微调代码
2、项目快速启动
环境准备
- 设置环境变量
OPENAI_API_KEY
为你的 OpenAI API 密钥。 - 安装依赖项:
pip install -r requirements.txt
数据生成
运行以下命令生成数据:
python -m generate_instruction generate_instruction_following_data
模型微调
-
安装特定版本的 Hugging Face transformers 库:
pip install git+https://github.com/huggingface/transformers.git@68d640f7c368bcaaaecfc678f11908ebbd3d6176
-
使用以下命令微调 LLaMA-7B 模型:
torchrun --nproc_per_node=8 --master_port=<your_random_port> train.py \ --model_name_or_path <your_path_to_hf_converted_llama_ckpt_and_tokenizer> \ --data_path /data/code_alpaca_20k.json \ --fp16 True \ --output_dir <your_output_dir> \ --num_train_epochs 3 \ --per_device_train_batch_size 8 \ --per_device_eval_batch_size 8 \ --gradient_accumulation_steps 4 \ --evaluation_strategy "no" \ --save_strategy "steps" \ --save_steps 500 \ --save_total_limit 1 \ --learning_rate 2e-5 \ --weight_decay 0 \ --warmup_ratio 0.03 \ --lr_scheduler_type "cosine" \ --logging_steps 1 \ --deepspeed ds_config.json \ --tf32 False
3、应用案例和最佳实践
应用案例
Code Alpaca 可以用于生成和编辑代码,特别适用于以下场景:
- 自动化代码生成
- 代码优化和重构
- 快速原型开发
最佳实践
- 数据质量:确保训练数据的质量和多样性,以提高模型的泛化能力。
- 模型微调:根据具体应用场景微调模型,以获得最佳性能。
- 资源管理:合理配置计算资源,确保训练过程高效稳定。
4、典型生态项目
Code Alpaca 可以与以下生态项目结合使用:
- Hugging Face Transformers:用于模型微调和推理。
- DeepSpeed:用于加速模型训练和优化资源使用。
- OpenAI API:用于数据生成和模型评估。
通过结合这些生态项目,可以进一步提升 Code Alpaca 的性能和应用范围。
codealpaca 项目地址: https://gitcode.com/gh_mirrors/co/codealpaca