Code Alpaca 项目使用指南

Code Alpaca 项目使用指南

codealpaca 项目地址: https://gitcode.com/gh_mirrors/co/codealpaca

1、项目介绍

Code Alpaca 是一个基于 LLaMA 模型的代码生成指令跟随模型。该项目旨在构建和分享一个专门用于代码生成的指令跟随模型。Code Alpaca 完全基于 Stanford Alpaca 项目,仅在训练数据上进行了修改。项目包含以下内容:

  • 用于微调模型的 20K 数据集
  • 数据生成代码
  • 模型微调代码

2、项目快速启动

环境准备

  1. 设置环境变量 OPENAI_API_KEY 为你的 OpenAI API 密钥。
  2. 安装依赖项:
    pip install -r requirements.txt
    

数据生成

运行以下命令生成数据:

python -m generate_instruction generate_instruction_following_data

模型微调

  1. 安装特定版本的 Hugging Face transformers 库:

    pip install git+https://github.com/huggingface/transformers.git@68d640f7c368bcaaaecfc678f11908ebbd3d6176
    
  2. 使用以下命令微调 LLaMA-7B 模型:

    torchrun --nproc_per_node=8 --master_port=<your_random_port> train.py \
    --model_name_or_path <your_path_to_hf_converted_llama_ckpt_and_tokenizer> \
    --data_path /data/code_alpaca_20k.json \
    --fp16 True \
    --output_dir <your_output_dir> \
    --num_train_epochs 3 \
    --per_device_train_batch_size 8 \
    --per_device_eval_batch_size 8 \
    --gradient_accumulation_steps 4 \
    --evaluation_strategy "no" \
    --save_strategy "steps" \
    --save_steps 500 \
    --save_total_limit 1 \
    --learning_rate 2e-5 \
    --weight_decay 0 \
    --warmup_ratio 0.03 \
    --lr_scheduler_type "cosine" \
    --logging_steps 1 \
    --deepspeed ds_config.json \
    --tf32 False
    

3、应用案例和最佳实践

应用案例

Code Alpaca 可以用于生成和编辑代码,特别适用于以下场景:

  • 自动化代码生成
  • 代码优化和重构
  • 快速原型开发

最佳实践

  • 数据质量:确保训练数据的质量和多样性,以提高模型的泛化能力。
  • 模型微调:根据具体应用场景微调模型,以获得最佳性能。
  • 资源管理:合理配置计算资源,确保训练过程高效稳定。

4、典型生态项目

Code Alpaca 可以与以下生态项目结合使用:

  • Hugging Face Transformers:用于模型微调和推理。
  • DeepSpeed:用于加速模型训练和优化资源使用。
  • OpenAI API:用于数据生成和模型评估。

通过结合这些生态项目,可以进一步提升 Code Alpaca 的性能和应用范围。

codealpaca 项目地址: https://gitcode.com/gh_mirrors/co/codealpaca

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

纪亚钧

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值