推荐文章:CAT:视觉变换器中的交叉注意力机制
CAT项目地址:https://gitcode.com/gh_mirrors/cat5/CAT
在计算机视觉领域,Transformer的潜力日益显现,催生了众多创新性方法。然而,如ViT等模型将图像切分为小块进行处理,导致计算负担巨大,阻碍了模型训练和推理的速度。现在,我们向您隆重推荐一个名为"CAT:Cross Attention in Vision Transformer"的开源项目,它提出了一种新的注意力机制——交叉注意力,以解决这一难题。
1、项目介绍
CAT(Cross Attention Transformer)的核心是交替在图像块内部和块之间进行注意力操作,以捕获局部信息并利用单一通道特征图分割出的图像块来捕捉全局信息。通过这种交替的方式,CAT实现了高效而性能优良的视觉变换器,且构建了一个可用于各种视觉任务的分层网络。
2、项目技术分析
CAT引入的交叉注意力机制减少了标准自注意力计算所需的复杂度,从而降低了模型的计算成本。它在每个图像块内进行注意力运算以获取局部细节,然后跨图像块进行注意力交互以获得整体上下文信息。这种设计不仅兼顾了局部和全局信息,而且提高了运算效率。
3、项目及技术应用场景
CAT在ImageNet-1K、COCO目标检测和ADE20K语义分割等多个基准上表现出色。在COCO中,无论应用于Mask R-CNN还是FCOS、ATSS等不同检测框架,都取得了高精度的结果;在ADE20K语义分割任务上,也展示了强大的分割能力。
4、项目特点
- 高效运算:采用交叉注意力机制,显著降低模型的计算需求。
- 性能优秀:预训练模型在ImageNet-1K、COCO和ADE20K上的表现达到了同类领先水平。
- 通用性强:适配多种任务,可作为通用视觉任务的后端模型。
- 易于实现:基于Swin-Transformer实现,提供清晰的启动指南。
总的来说,CAT是一个值得尝试的前沿视觉Transformer模型,无论你是研究者还是开发者,都可以从这个项目中受益。立即开始探索CAT,开启您的高效视觉任务处理之旅吧!
[![](figures/architecture.jpg)](figures/architecture.jpg)
引用CAT的论文:
@article{lin2021cat,
title={CAT: Cross Attention in Vision Transformer},
author={林何正 and 邵星 and 吴祥宇 and 杨帆 and 沈东 and 王忠元 and 宋青 and 袁伟},
journal={arXiv preprint arXiv:2106.05786},
year={2021}
}