SE3-Transformer-PyTorch 使用教程

SE3-Transformer-PyTorch 使用教程

se3-transformer-pytorch Implementation of SE3-Transformers for Equivariant Self-Attention, in Pytorch. This specific repository is geared towards integration with eventual Alphafold2 replication. 项目地址: https://gitcode.com/gh_mirrors/se/se3-transformer-pytorch

1. 项目介绍

SE3-Transformer-PyTorch 是一个基于 PyTorch 实现的 SE3-Transformer 模型,专门用于处理 3D 点云和图结构数据的等变自注意力机制。该项目的核心目标是支持 Alphafold2 的复现以及其他药物发现应用。SE3-Transformer 模型在处理 3D 数据时具有等变性,这意味着当输入数据(如分子图或蛋白质结构)发生旋转或平移时,模型的输出也会相应地进行等变变换。

2. 项目快速启动

安装

首先,确保你已经安装了 Python 和 PyTorch。然后,使用 pip 安装 SE3-Transformer-PyTorch:

pip install se3-transformer-pytorch

基本使用

以下是一个简单的示例,展示如何使用 SE3-Transformer 模型:

import torch
from se3_transformer_pytorch import SE3Transformer

# 初始化模型
model = SE3Transformer(
    dim=512,  # 特征维度
    heads=8,  # 注意力头数
    depth=6,  # 层数
    dim_head=64,  # 每个头的维度
    num_degrees=4,  # 特征的多项式阶数
    valid_radius=10  # 有效半径
)

# 生成随机输入数据
feats = torch.randn(1, 1024, 512)  # 特征
coors = torch.randn(1, 1024, 3)    # 坐标
mask = torch.ones(1, 1024).bool()  # 掩码

# 前向传播
out = model(feats, coors, mask)

print(out.shape)  # 输出形状应为 (1, 1024, 512)

3. 应用案例和最佳实践

应用案例

Alphafold2 复现

SE3-Transformer 模型特别适用于 Alphafold2 的复现。以下是一个简化的示例,展示如何在 Alphafold2 中使用 SE3-Transformer:

import torch
from se3_transformer_pytorch import SE3Transformer

model = SE3Transformer(
    dim=64,
    depth=2,
    input_degrees=1,
    num_degrees=2,
    output_degrees=2,
    reduce_dim_out=True,
    differentiable_coors=True
)

atom_feats = torch.randn(2, 32, 64)
coors = torch.randn(2, 32, 3)
mask = torch.ones(2, 32).bool()

refined_coors = coors + model(atom_feats, coors, mask, return_type=1)
print(refined_coors.shape)  # 输出形状应为 (2, 32, 3)

最佳实践

  1. 数据预处理:确保输入数据的特征和坐标是正确对齐的,并且掩码信息是准确的。
  2. 模型调优:根据具体任务调整模型的超参数,如 dimheadsdepth 等。
  3. 等变性验证:在训练和测试过程中,验证模型的输出是否具有等变性,特别是在处理 3D 数据时。

4. 典型生态项目

SE3-Transformer-PyTorch 可以与其他 PyTorch 生态项目结合使用,以增强其功能和应用范围。以下是一些典型的生态项目:

  1. PyTorch Geometric:用于处理图结构数据的库,可以与 SE3-Transformer 结合使用,处理分子图等数据。
  2. Alphafold2:用于蛋白质结构预测的项目,SE3-Transformer 可以作为其核心组件之一。
  3. DGL (Deep Graph Library):另一个用于图神经网络的库,支持多种图操作和模型。

通过结合这些生态项目,SE3-Transformer-PyTorch 可以在更广泛的领域中发挥作用,如药物发现、材料科学等。

se3-transformer-pytorch Implementation of SE3-Transformers for Equivariant Self-Attention, in Pytorch. This specific repository is geared towards integration with eventual Alphafold2 replication. 项目地址: https://gitcode.com/gh_mirrors/se/se3-transformer-pytorch

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

齐游菊Rosemary

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值