探索高精度传感器融合:extrinsic_lidar_camera_calibration

探索高精度传感器融合:extrinsic_lidar_camera_calibration

extrinsic_lidar_camera_calibrationThis is a package for extrinsic calibration between a 3D LiDAR and a camera, described in paper: Improvements to Target-Based 3D LiDAR to Camera Calibration. This package is used for Cassie Blue's 3D LiDAR semantic mapping and automation.项目地址:https://gitcode.com/gh_mirrors/ex/extrinsic_lidar_camera_calibration

在自动驾驶和机器人领域,精确的传感器融合是至关重要的。今天,我们将向您推荐一个开源项目——extrinsic_lidar_camera_calibration,这是一个针对3D激光雷达(LiDAR)与相机外参标定的高效工具包。这个项目源于密歇根大学的Biped实验室,由Bruce JK Huang和Jessy W. Grizzle共同创建。

项目简介

extrinsic_lidar_camera_calibration的目标是在LiDAR与单目相机之间进行精确的刚体变换计算。它采用了一种创新的方法,通过改进的目标定位以及优化的拟合算法,有效地减少了由于数据稀疏性和系统误差导致的问题。该方法已发表在IEEE Access,并且在arXiv上可以找到详细论文。

技术分析

该工具包利用了预定义尺寸和几何形状的目标板,以增强目标定位的准确性。其亮点在于,它避免了繁琐的手动边缘提取过程,采用了点云到相机的投影匹配策略进行标定。此外,它还提供了一个“交叉验证研究”,基于从3D LiDAR点云到图像角点的投影来评估结果。

应用场景

此项目适用于各种需要精确传感器融合的应用,例如SLAM(同步定位与建图)、自主导航、三维语义映射等。通过将LiDAR与相机准确地对齐,可以在视觉和深度信息之间建立紧密联系,为机器人和自动驾驶车辆提供更精准的环境感知。

在实际应用中,你可以看到这个工具包在两足机器人Cassie上的表现,视频展示了其用于构建3D LiDAR语义地图的能力,这在未知环境中自主导航时特别有用。

项目特点

  1. 高效优化:利用目标板改善了在量化和系统误差中的目标定位。
  2. 自动化处理:无需手动提取目标边缘,简化了标定流程。
  3. 高性能:在多种测试场景下,相对于现有方法,平均投影误差降低了50%,标准差降低了70%。
  4. 可扩展性:支持不同的目标数量,适应不同规模的标定任务。
  5. 直观结果:提供了可视化工具,让使用者能直观了解标定效果。

为了快速试用,可以直接下载预处理的数据,稍作设置即可运行示例代码,观察标定结果。对于开发者和专业用户,提供了详细的说明以完成完整的标定过程。

总之,extrinsic_lidar_camera_calibration是一个强大且易于使用的工具包,对于任何需要 LiDAR 与相机之间精确融合的项目来说都是一个理想的选择。立即加入并体验这种高精度的传感器融合吧!

extrinsic_lidar_camera_calibrationThis is a package for extrinsic calibration between a 3D LiDAR and a camera, described in paper: Improvements to Target-Based 3D LiDAR to Camera Calibration. This package is used for Cassie Blue's 3D LiDAR semantic mapping and automation.项目地址:https://gitcode.com/gh_mirrors/ex/extrinsic_lidar_camera_calibration

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

张姿桃Erwin

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值