推荐开源项目:Lag-Llama——时间序列预测的先驱模型

推荐开源项目:Lag-Llama——时间序列预测的先驱模型

项目地址:https://gitcode.com/time-series-foundation-models/lag-llama

lag-llama-architecture

Lag-Llama,这个名字听起来既神秘又富有魅力,实际上它是全球首个针对时间序列预测的开源基础模型。这个创新的项目源自于对数据流中未来趋势的精准预测需求,旨在为科研和工业界提供一个强大的工具箱。

项目介绍

Lag-Llama不仅仅是另一个时间序列分析库,它是一个专为概率性时间序列预测设计的预训练模型,具备零样本预测和微调功能。其灵活性和通用性使其能够适应各种频率的数据集,无论预测目标的时间跨度如何。借助Hugging Face平台,你可以直接获取模型权重并立即开始你的预测之旅。

项目技术分析

该模型采用了先进的机器学习技术和深度学习架构,可以产出每个预测时间步的概率分布。这种概率性的预测使得结果更加严谨,更有利于决策者理解不确定性。此外,Lag-Llama经过精心设计,允许用户调整上下文长度以优化预测性能,这在不同场景下显得尤为重要。

应用场景

Lag-Llama的应用场景广泛,包括但不限于:

  1. 财务分析:预测股票价格或经济指标。
  2. 供应链管理:预测库存需求或交货时间。
  3. 健康监控:预测患者健康状态的变化。
  4. 智能能源系统:预测电力消耗或风力发电量。
  5. 物联网(IoT):预测设备维护需求或传感器读数。

项目特点

  1. 零样本预测:无需额外训练即可对不同频率的数据进行预测。
  2. 可微调:如果需要提高精度,可对特定任务进行微调。
  3. 普适性强:适用于任何时间和频率的数据集,预测长度任意。
  4. 开放源代码:完全免费,社区驱动,持续更新和支持。
  5. 高效复现:提供了详尽的实验复制指南,便于验证和扩展研究。

为了更好地理解和利用Lag-Llama,你可以通过提供的Colab演示进行实践,从零样本预测到微调,每一步都有清晰的指导。

如果你对时间序列预测有深入的需求,或者只是想探索这一领域的前沿技术,那么Lag-Llama无疑是你的理想选择。立即加入,让这个聪明的“美洲驼”为你导航未来的数据轨迹吧!

查看论文 Twitter 讨论线程 模型权重 Colab 零样本预测演示 Colab 微调初步演示

项目地址:https://gitcode.com/time-series-foundation-models/lag-llama

  • 3
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
以下是一个简单的时间序列预测模型案例,使用Python编程实现: 1. 准备数据集 我们将使用一个名为“AirPassengers.csv”的数据集,其中包含1949年1月至1960年12月的每个月的乘客人数。首先,我们需要导入必要的库和数据集: ```python import pandas as pd import numpy as np import matplotlib.pyplot as plt # 导入数据集 df = pd.read_csv('AirPassengers.csv') ``` 2. 可视化数据集 我们可以使用Matplotlib库来可视化数据集,以便更好地了解其趋势和季节性: ```python plt.plot(df['Month'],df['#Passengers']) plt.xlabel('Year-Month') plt.ylabel('Number of Passengers') plt.title('Air Passengers Dataset') plt.show() ``` 3. 创建时间序列模型 我们将使用ARIMA(自回归移动平均)模型来预测未来的乘客人数。ARIMA模型包括三个重要的参数:p,d和q。其中,p是自回归项数,d是差分次数,q是移动平均项数。 首先,我们需要将数据集分为训练集和测试集。我们将使用前80%的数据作为训练集,其余的20%作为测试集: ```python # 拆分数据集 train_data, test_data = df[0:int(len(df)*0.8)], df[int(len(df)*0.8):] ``` 然后,我们需要确定ARIMA模型的参数。我们可以通过绘制自相关性(ACF)和偏自相关性(PACF)图来确定这些参数: ```python from statsmodels.tsa.stattools import acf, pacf # 绘制ACF和PACF图 lag_acf = acf(train_data['#Passengers'], nlags=20) lag_pacf = pacf(train_data['#Passengers'], nlags=20, method='ols') # 绘制ACF图 plt.subplot(121) plt.plot(lag_acf) plt.axhline(y=0, linestyle='--', color='gray') plt.axhline(y=-1.96/np.sqrt(len(train_data['#Passengers'])), linestyle='--', color='gray') plt.axhline(y=1.96/np.sqrt(len(train_data['#Passengers'])), linestyle='--', color='gray') plt.title('Autocorrelation Function') # 绘制PACF图 plt.subplot(122) plt.plot(lag_pacf) plt.axhline(y=0, linestyle='--', color='gray') plt.axhline(y=-1.96/np.sqrt(len(train_data['#Passengers'])), linestyle='--', color='gray') plt.axhline(y=1.96/np.sqrt(len(train_data['#Passengers'])), linestyle='--', color='gray') plt.title('Partial Autocorrelation Function') plt.tight_layout() plt.show() ``` 根据这些图表,我们可以选择ARIMA模型的参数。在这个例子中,我们将使用p=2,d=1和q=2。然后,我们可以使用ARIMA模型来训练数据集: ```python from statsmodels.tsa.arima_model import ARIMA # 创建ARIMA模型并拟合训练集 model = ARIMA(train_data['#Passengers'], order=(2, 1, 2)) model_fit = model.fit(disp=-1) print(model_fit.summary()) ``` 4. 预测未来的乘客人数 一旦我们训练了模型,我们就可以使用它来预测未来的乘客人数。在这个例子中,我们将使用模型来预测测试集中的乘客人数,并将其与实际值进行比较: ```python # 预测测试集中的乘客人数 predictions = model_fit.forecast(steps=len(test_data))[0] # 可视化预测和实际值 plt.plot(test_data['#Passengers'].values, label='Actual') plt.plot(predictions, label='Predicted') plt.xlabel('Time') plt.ylabel('Number of Passengers') plt.title('Air Passengers Dataset') plt.legend() plt.show() ``` 这个简单的时间序列预测模型案例演示了如何使用Python编程语言来预测未来的趋势和季节性。通过使用ARIMA模型,我们可以更好地了解时间序列数据,并使用它来做出更好的商业决策。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

裴辰垚Simone

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值