高性能实时立体SLAM——Stereo DSO

高性能实时立体SLAM——Stereo DSO

stereo-dsoStereo DSO项目地址:https://gitcode.com/gh_mirrors/st/stereo-dso

项目介绍

Stereo DSO是一个由Horizon Robotics自主驾驶团队开发的高性能实时立体视觉SLAM(Simultaneous Localization And Mapping)系统。它基于DSO(Direct Sparse Odometry),专为在CPU上运行而设计,特别适用于笔记本电脑和自动驾驶车辆的定位与建图服务。

技术分析

Stereo DSO结合了直接法和立体匹配技术,实现了对时间上相邻和静态场景的深度估计。关键帧与非关键帧处理方式不同:新初始化的关键帧会通过静态立体匹配更新和修剪深度图;而非关键帧则用于关键帧深度图的精细化。其核心算法包括 ImmaturePoint 类中的静态立体深度估计,以及 CoarseTracker 和 FullSystem 中的深度传播与初始化方法。

应用场景

该系统已被验证可在各种环境中稳定工作,如Kitti数据集的高速公路、公园和车库等。它特别适合那些需要实时定位和精确建图的应用,例如自动驾驶汽车、无人机和移动机器人。

项目特点

  1. 无需初始化:Stereo DSO能够立即启动并开始跟踪。
  2. 高精度与稳定性:相比DSO,Stereo DSO在尺度估算、准确性和鲁棒性上有显著提升,尤其是在Kitti数据集上的表现。
  3. 实时性能:平均运行速度约为20帧/秒,确保实时性。
  4. 健壮性:Stereo DSO不易丢失跟踪状态,即使在初始阶段运动不大的情况下也能成功初始化。

实验结果显示,在Kitti 05和00序列上,Stereo DSO的位姿误差远低于DSO,且运行效率高。这意味着无论是在复杂的城市环境还是较为简单的道路上,Stereo DSO都能提供可靠且高效的定位服务。

为了进一步优化性能,我们欢迎开发者们参与Stereo DSO的贡献和问题讨论。如果你想了解更多或有任何疑问,可通过Github或者电子邮件jiatianwuwork@gmail.com联系我们。

如果你正在寻找一个能够实现实时、精准、稳定的立体视觉SLAM解决方案,那么Stereo DSO绝对是你的首选。现在就加入我们,一起探索更广阔的计算机视觉应用领域吧!

stereo-dsoStereo DSO项目地址:https://gitcode.com/gh_mirrors/st/stereo-dso

### ORB-SLAM3 立体配置与使用教程 ORB-SLAM3 是一种先进的视觉里程计和同步定位与建图 (SLAM) 系统,支持单目、双目以及 RGB-D 输入。对于立体相机设置,该系统能够提供高精度的姿态估计和地图构建。 #### 配置环境 为了运行 ORB-SLAM3 的立体模式,需先安装必要的依赖项并编译源码: 1. 安装 ROS 和其他依赖库。 2. 下载 ORB-SLAM3 源代码仓库。 3. 编辑 `CMakeLists.txt` 文件以启用立体功能选项。 4. 使用 CMake 工具进行项目构建。 ```bash git clone https://github.com/UZI- Robotics/ORB_SLAM3.git cd ORB_SLAM3 mkdir build && cd build cmake .. make -j$(nproc) ``` #### 准备摄像头参数文件 创建一个新的 YAML 文件来定义左摄像机和右摄像机的具体参数,包括焦距、主点偏移量以及其他校准系数等信息[^1]。 ```yaml %YAML:1.0 Camera.fx: 718.856 Camera.fy: 718.856 Camera.cx: 607.1928 Camera.cy: 185.2157 ... ``` #### 启动节点 通过命令行启动 ORB-SLAM3 节点,并指定使用的传感器类型为STEREO: ```bash rosrun orbslam3 mono_stereo_vo __name:=StereoVO left_image_topic:=/stereo/left/image_raw right_image_topic:=/stereo/right/image_raw camera_settings_file:=path_to_your_yaml.yaml vocab_path:=Vocabulary/ORBvoc.txt settings_file:=Examples/Stereo/stereo_kitti.yaml ``` 上述指令会加载预训练好的词典模型,并读取之前准备好的相机内参表单路径作为输入参数传递给程序实例化对象时调用。 #### 可视化工具集成 可以利用 RViz 来显示由 ORB-SLAM3 计算得到的地图特征点云数据和其他相关信息。这有助于直观理解算法的工作原理及其性能表现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

明俪钧

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值