高性能实时立体SLAM——Stereo DSO
stereo-dsoStereo DSO项目地址:https://gitcode.com/gh_mirrors/st/stereo-dso
项目介绍
Stereo DSO是一个由Horizon Robotics自主驾驶团队开发的高性能实时立体视觉SLAM(Simultaneous Localization And Mapping)系统。它基于DSO(Direct Sparse Odometry),专为在CPU上运行而设计,特别适用于笔记本电脑和自动驾驶车辆的定位与建图服务。
技术分析
Stereo DSO结合了直接法和立体匹配技术,实现了对时间上相邻和静态场景的深度估计。关键帧与非关键帧处理方式不同:新初始化的关键帧会通过静态立体匹配更新和修剪深度图;而非关键帧则用于关键帧深度图的精细化。其核心算法包括 ImmaturePoint 类中的静态立体深度估计,以及 CoarseTracker 和 FullSystem 中的深度传播与初始化方法。
应用场景
该系统已被验证可在各种环境中稳定工作,如Kitti数据集的高速公路、公园和车库等。它特别适合那些需要实时定位和精确建图的应用,例如自动驾驶汽车、无人机和移动机器人。
项目特点
- 无需初始化:Stereo DSO能够立即启动并开始跟踪。
- 高精度与稳定性:相比DSO,Stereo DSO在尺度估算、准确性和鲁棒性上有显著提升,尤其是在Kitti数据集上的表现。
- 实时性能:平均运行速度约为20帧/秒,确保实时性。
- 健壮性:Stereo DSO不易丢失跟踪状态,即使在初始阶段运动不大的情况下也能成功初始化。
实验结果显示,在Kitti 05和00序列上,Stereo DSO的位姿误差远低于DSO,且运行效率高。这意味着无论是在复杂的城市环境还是较为简单的道路上,Stereo DSO都能提供可靠且高效的定位服务。
为了进一步优化性能,我们欢迎开发者们参与Stereo DSO的贡献和问题讨论。如果你想了解更多或有任何疑问,可通过Github或者电子邮件jiatianwuwork@gmail.com联系我们。
如果你正在寻找一个能够实现实时、精准、稳定的立体视觉SLAM解决方案,那么Stereo DSO绝对是你的首选。现在就加入我们,一起探索更广阔的计算机视觉应用领域吧!
stereo-dsoStereo DSO项目地址:https://gitcode.com/gh_mirrors/st/stereo-dso