长短时Transformer在在线动作检测中的应用指南

长短时Transformer在在线动作检测中的应用指南

long-short-term-transformer [NeurIPS 2021 Spotlight] Official implementation of Long Short-Term Transformer for Online Action Detection 项目地址: https://gitcode.com/gh_mirrors/lo/long-short-term-transformer

1. 目录结构及介绍

长短期Transformer(LSTM)官方实现项目遵循了清晰的目录组织原则,便于开发者快速定位所需组件:

  • ./amazon-science/long-short-term-transformer 主项目根目录。
    • configs: 存放配置文件,定义模型参数、训练设置等。
    • data: 建议存放数据集的软链接,指向实际的数据路径。
    • demo: 示例代码或用于快速测试的部分。
    • src: 核心源代码,包括模型定义、主要处理逻辑等。
    • tools: 工具脚本,如训练、测试、评估程序。
    • .gitignore, CODE_OF_CONDUCT.md, CONTRIBUTING.md, LICENSE, NOTICE, README.md, requirements.txt: 项目管理文件,规定了行为准则、贡献指导、许可信息、通知事项以及必要的依赖库列表。

2. 项目启动文件介绍

项目的核心运行主要通过tools目录下的脚本来驱动:

  • train_net.py: 训练脚本,负责初始化模型,加载数据,并执行模型训练过程。支持从头开始训练和基于预训练模型进行微调。
  • test_net.py: 测试与推理脚本,提供了三种不同的在线推理模式——伴随训练的推断(SOLVER.PHASES="['train', 'test']"), 批量模式和流模式,以适应不同场景的需求。

启动示例(训练新模型):

python tools/train_net.py --config_file $CONFIG_PATH --gpu $GPU_ID

启动示例(批量模式下进行在线推理):

python tools/test_net.py --config_file $CONFIG_PATH --gpu $GPU_ID \
MODEL.CHECKPOINT $CHECKPOINT_PATH MODEL.LSTR.INFERENCE_MODE batch

3. 项目配置文件介绍

配置文件通常位于configs目录,每一份配置文件.yaml定义了一个实验的具体设置,包括但不限于:

  • 模型架构细节:如Transformer层的数量、隐藏维度等。
  • 数据集路径:指定特征文件和目标标签的位置。
  • 训练参数:学习率、批次大小、训练轮数等。
  • 优化器设定:选用哪种优化算法,其参数配置。
  • 记忆机制配置:长短时记忆的时间窗口长度。
  • 评估策略:如何进行验证及测试。

示例配置文件可能包含以下关键字段(简化表示):

model:
  type: LSTM
  hidden_size: 512
solver:
  base_lr: 0.001
  epochs: 100
lstr:
  mem_len_long_term: 512
  mem_len_short_term: 8
dataset:
  train_ann_file: path/to/train/annots
  val_ann_file: path/to/val/annots

开发者需依据实验需求修改这些配置文件来调整实验的各个方面,确保所有路径正确无误且符合实际项目布局。

long-short-term-transformer [NeurIPS 2021 Spotlight] Official implementation of Long Short-Term Transformer for Online Action Detection 项目地址: https://gitcode.com/gh_mirrors/lo/long-short-term-transformer

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

强妲佳Darlene

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值