FastRTC 使用教程
1. 项目介绍
FastRTC 是一个用 Python 编写的实时通信库,可以将任何 Python 函数转变为通过 WebRTC 或 WebSocket 进行音频和视频流的实时通信。它提供了自动化的语音检测和轮流发言的功能,允许开发者专注于用户的响应逻辑,而无需担心底层通信细节。
2. 项目快速启动
以下是一个快速启动 FastRTC 的示例代码,它创建了一个简单的回声服务:
from fastrtc import Stream, ReplyOnPause
import numpy as np
def echo(audio):
# 该函数将会接收到用户发送的音频,直到用户暂停
# 实现一个迭代器,产生音频
yield audio
stream = Stream(
handler=ReplyOnPause(echo),
modality="audio",
mode="send-receive"
)
# 运行内置的 UI 来测试和共享你的流
stream.ui.launch()
确保你已经通过 pip install fastrtc
安装了 FastRTC。要使用内置的 UI 界面,只需调用 stream.ui.launch()
方法即可。
3. 应用案例和最佳实践
以下是一些 FastRTC 的应用案例和最佳实践:
Echo Audio 示例
一个简单的音频回声服务,将用户发送的音频原样返回。
LLM Voice Chat 示例
结合了大型语言模型(LLM)的语音聊天应用,可以实现实时语音到文本的转换,与模型交互,并将模型的响应转换回语音。
Webcam Stream 示例
捕捉并翻转摄像头流,可以用于视频通话或实时监控。
Object Detection 示例
使用 YOLOv10 模型在视频流中实现实时物体检测。
4. 典型生态项目
FastRTC 的生态系统中有许多项目,以下是一些典型的例子:
- Gradio:一个用于快速构建机器学习演示的应用程序界面工具。
- ElevenLabs:提供高质量的文本到语音转换服务。
- Hugging Face Hub:用于下载预训练模型和权重。
开发者可以结合这些生态项目,构建更加复杂和功能丰富的实时通信应用。