推荐使用FastAPI Model Server Skeleton构建高效机器学习服务

推荐使用FastAPI Model Server Skeleton构建高效机器学习服务

fastapi-ml-skeletonFastAPI Skeleton App to serve machine learning models production-ready.项目地址:https://gitcode.com/gh_mirrors/fa/fastapi-ml-skeleton

如果你正在寻找一个快速、简单且安全的解决方案来部署你的机器学习模型,那么FastAPI Model Server Skeleton可能正是你需要的工具。这个由Sebastián Ramírez创建的开源项目,借助强大的FastAPI框架,为你的生产环境模型服务提供了强大的支撑。

1、项目介绍

FastAPI Model Server Skeleton是一个预先配置好的应用骨架,可加速你的下一个机器学习项目。它包括了一个用于房屋价格预测的样例回归模型,帮助你了解如何利用该框架。项目代码已经过全面测试,并通过tox提供了一键扩展功能。

2、项目技术分析

  • 基于FastAPI:FastAPI是一个现代化的高性能Web框架,用于构建API。它的类型提示和自动化的开放API文档使得开发更高效。
  • 预配置的安全性:通过.env文件配置API密钥进行认证,确保API的安全性。
  • 全栈测试:项目支持Python 3.6+并集成了Flake8, Autopep8, Bandit等工具进行代码质量和安全检查,确保代码质量。

3、项目及技术应用场景

  • 模型服务部署:将训练好的机器学习模型快速部署为RESTful API,服务于前端或其他应用程序。
  • 教育与学习:对于初学者,这是一个很好的实践平台,了解如何将模型与API相结合。
  • 敏捷开发:在实际项目中,可以快速搭建原型,节省开发时间。

4、项目特点

  1. 易于上手:只需安装必要依赖,复制配置文件,设置API Key即可运行。
  2. 自动化文档:内建Swagger UI,一键生成API文档,使调用和调试变得直观。
  3. 灵活的测试:通过tox工具,轻松执行多版本Python的测试和代码风格检查。
  4. 预置模型示例:房屋价格预测模型让开发者能够快速体验和理解项目工作流程。

想要尝试这个项目?只需要按照Readme中的指示进行操作,你就可以拥有自己的机器学习API服务器。立即行动,开启你的高效服务之旅吧!

pip install -r requirements
cp .env.example .env
# 配置API_KEY
python -c "import uuid; print(str(uuid.uuid4()))"
uvicorn fastapi_skeleton.main:app

然后访问http://localhost:8000/docs,开始探索FastAPI Model Server Skeleton的魅力吧!

fastapi-ml-skeletonFastAPI Skeleton App to serve machine learning models production-ready.项目地址:https://gitcode.com/gh_mirrors/fa/fastapi-ml-skeleton

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

施刚爽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值