探索未来智能:AlphaStar 开源项目详解

探索未来智能:AlphaStar 开源项目详解

项目地址:https://gitcode.com/gh_mirrors/al/alphastar

在人工智能领域,DeepMind 一直走在前沿,其研发的 AlphaStar 系统不仅挑战了游戏界的巨头——《星际争霸II》,更是展示了深度学习在复杂决策任务中的强大潜力。今天,我们要介绍的就是这个可以训练出专业级《星际争霸II》AI的开源项目:AlphaStar。

项目介绍

AlphaStar 是 DeepMind 提供的一个开源包,它包含了训练 StarCraft II 代理所需的各种工具,由 Blizzard Entertainment 提供的游戏环境。该项目的目标是推动更多关于 StarCraft II 的研究兴趣,并提供了以下关键功能:

  1. 可用于不同学习算法的通用架构,适用于在线和离线设置。
  2. 数据读取器,以及离线强化学习的训练和评估脚本,以行为克隆为例。

技术分析

AlphaStar 基于 Python3.9 和 Linux 运行,依赖于 PySC2 转换器进行数据生成和评估。代码结构清晰,包括可编辑安装和使用 Bazel 构建两种方式,便于开发者进行定制化开发。Bazel 编译选项确保了对 C++17 标准的支持,使得项目的编译过程更加灵活。

应用场景

无论你是 AI 研究者还是游戏开发者,AlphaStar 都是一个宝贵的资源。你可以利用它的框架来:

  • 学习构建复杂的实时决策系统。
  • 设计和测试新的强化学习算法。
  • 为其他多玩家实时策略游戏开发智能体。

项目特点

  • 开箱即用:通过 pip 安装,轻松获取最新版本,无需繁琐的配置步骤。
  • 灵活性:提供两种安装方式,满足不同开发需求,支持本地 PySC2 源码编译。
  • 离线强化学习:提供完整的离线训练与评估流程,适合行为克隆等研究。
  • 学术贡献:项目相关论文可供引用,促进了 AI 在战略游戏领域的学术交流。

如果你想在自己的项目中实现类似 AlphaStar 的智能决策,或者只是对深度强化学习感兴趣,那么 AlphaStar 绝对值得尝试。现在就开始,探索属于你的未来智能吧!

[AlphaStar]: https://github.com/deepmind/alphastar
[DeepMind]: http://deepmind.com
[Blizzard Entertainment]: http://blizzard.com
[PySC2]: https://github.com/deepmind/pysc2

别忘了,这并非官方的 Google 产品,而是科研与创新的力量所在。使用时,请记得引用相关的学术成果。

alphastar 项目地址: https://gitcode.com/gh_mirrors/al/alphastar

StarCraft星际争霸的alphastar复现代码。兵种组合:正如上面所说,AlphaStar兵种组合非常单一,主要依靠“追猎者”。“追猎者”对空对地,速度很快,升级后还有“闪烁”技能,操作空间很大,非常适合游击战。AlphaStar充分发挥了“追猎者”的机动性,会把没血的“追猎者”及时往后拉;并且偏向于进攻战术,从而给了“追猎者”移动的空间。但“追猎者”的弱点是攻击力不高,因此大规模交战时难以作为主战部队。在与Mana的第四局比赛录像中,AlphaStar通过三面包夹缓解了这一点,但在最后一局直播比赛中还是无法被大量的“不朽者”击败了。其次,AlphaStar也经常使用“凤凰”,这是速度极快的空中单位,只能对空,但可以使用魔法把地面单位抬到空中。AlphaStar对凤凰的微操超越了所有职业选手,并且在会战中优先抬“哨兵”也让人眼前一亮。此外,在对战TLO的第三局中,AlphaStar大量使用了“自爆球”,但失误也很多,并且目前的版本“自爆球”已经被削弱了。 战术选择:AlphaStar偏向于前期进攻,经常使用两个“追猎者”或者两个“使徒”进行前压,之后要么持续施压打穿对手,要么尽快开二矿建造大量“凤凰”进攻。此外还进行了三次野兵营快攻,全部得手。两次野BG打4BG战术,一次野VR和电池。所以从人类的角度看,AlphaStar是一个依靠快攻和微操来取胜的前期型选手。 骚扰应对:在10局比赛录像中,AlphaStar对骚扰应对的都还不错,好几次虽然没堵口让对方的“使徒”进来杀了好些农民,但由于AlphaStar农民本来就造的比较多,所以对经济也影响不大。但直播的比赛中,AlphaStar面对Mana空投不朽的骚扰显得无能为力,被长时间牵制住非常被动,导致最终输掉了比赛。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

谢忻含Norma

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值