GeoCalib 项目使用教程
1. 项目介绍
GeoCalib 是一个用于单张图像校准的开源算法,它通过结合几何优化和深度学习来估计相机内参和重力方向。与之前的传统方法相比,GeoCalib 提供了一种更为灵活和准确的校准方式。本项目旨在为用户提供一个易于使用的工具,以从单张图像中恢复相机的内参和重力方向。
2. 项目快速启动
在开始使用 GeoCalib 之前,请确保您的环境中已安装了 Python (版本 >= 3.9) 和必要的依赖项。
安装依赖
git clone https://github.com/cvg/GeoCalib.git
cd GeoCalib
pip install -e .
或者,如果您不想克隆整个仓库,也可以使用以下命令直接安装:
pip install git+https://github.com/cvg/GeoCalib#egg=geocalib
快速校准示例
以下是一个使用 GeoCalib 进行图像校准的基本示例:
from geocalib import GeoCalib
# 检查CUDA是否可用,否则使用CPU
device = "cuda" if torch.cuda.is_available() else "cpu"
model = GeoCalib().to(device)
# 加载图像
image = model.load_image("path/to/image.jpg").to(device)
# 进行校准
result = model.calibrate(image)
# 打印结果
print("相机:", result["camera"])
print("重力:", result["gravity"])
确保将 "path/to/image.jpg"
替换为您要校准的图像的实际路径。
3. 应用案例和最佳实践
交互式演示
您可以通过以下命令启动一个交互式演示,它会显示摄像头的实时校准结果:
python -m geocalib.interactive_demo --camera_id 0
如果没有提供 --camera_id
参数,演示将询问 DroidCam 相机的 IP 地址。
摄像头模型
GeoCalib 支持多种摄像头模型,您可以通过修改 camera_model
参数来选择合适的模型:
pinhole
:默认模型,适用于无畸变的图像。simple_radial
:适用于小畸变的图像。simple_divisional
:适用于强鱼眼畸变的图像。radial
:适用于强畸变的图像。
model = GeoCalib(camera_model="simple_radial").to(device)
部分校准
如果已知部分内参或重力方向,可以将它们作为先验信息提供给校准函数:
# 已知内参
result = model.calibrate(image, priors={"focal": focal_length_tensor})
# 已知重力方向
result = model.calibrate(image, priors={"gravity": gravity_direction_tensor})
多图像校准
对于同一摄像头拍摄的多张图像,可以一次性进行批量校准:
# batch 是一个图像张量列表,每个张量的形状为 [C, H, W]
result = model.calibrate(batch, shared_intrinsics=True)
4. 典型生态项目
GeoCalib 可以作为计算机视觉项目中的一部分,与其他开源项目结合使用,例如:
- OpenPano:用于创建全景图像的开源项目。
- DeepCalib:另一种基于深度学习的相机校准方法。
- ParamNet:用于估计相机参数的神经网络。
通过结合这些项目,可以构建更为复杂和强大的计算机视觉应用。