GeoCalib 项目使用教程

GeoCalib 项目使用教程

GeoCalib GeoCalib: Learning Single-image Calibration with Geometric Optimization (ECCV 2024) GeoCalib 项目地址: https://gitcode.com/gh_mirrors/ge/GeoCalib

1. 项目介绍

GeoCalib 是一个用于单张图像校准的开源算法,它通过结合几何优化和深度学习来估计相机内参和重力方向。与之前的传统方法相比,GeoCalib 提供了一种更为灵活和准确的校准方式。本项目旨在为用户提供一个易于使用的工具,以从单张图像中恢复相机的内参和重力方向。

2. 项目快速启动

在开始使用 GeoCalib 之前,请确保您的环境中已安装了 Python (版本 >= 3.9) 和必要的依赖项。

安装依赖

git clone https://github.com/cvg/GeoCalib.git
cd GeoCalib
pip install -e .

或者,如果您不想克隆整个仓库,也可以使用以下命令直接安装:

pip install git+https://github.com/cvg/GeoCalib#egg=geocalib

快速校准示例

以下是一个使用 GeoCalib 进行图像校准的基本示例:

from geocalib import GeoCalib

# 检查CUDA是否可用,否则使用CPU
device = "cuda" if torch.cuda.is_available() else "cpu"
model = GeoCalib().to(device)

# 加载图像
image = model.load_image("path/to/image.jpg").to(device)

# 进行校准
result = model.calibrate(image)

# 打印结果
print("相机:", result["camera"])
print("重力:", result["gravity"])

确保将 "path/to/image.jpg" 替换为您要校准的图像的实际路径。

3. 应用案例和最佳实践

交互式演示

您可以通过以下命令启动一个交互式演示,它会显示摄像头的实时校准结果:

python -m geocalib.interactive_demo --camera_id 0

如果没有提供 --camera_id 参数,演示将询问 DroidCam 相机的 IP 地址。

摄像头模型

GeoCalib 支持多种摄像头模型,您可以通过修改 camera_model 参数来选择合适的模型:

  • pinhole:默认模型,适用于无畸变的图像。
  • simple_radial:适用于小畸变的图像。
  • simple_divisional:适用于强鱼眼畸变的图像。
  • radial:适用于强畸变的图像。
model = GeoCalib(camera_model="simple_radial").to(device)

部分校准

如果已知部分内参或重力方向,可以将它们作为先验信息提供给校准函数:

# 已知内参
result = model.calibrate(image, priors={"focal": focal_length_tensor})

# 已知重力方向
result = model.calibrate(image, priors={"gravity": gravity_direction_tensor})

多图像校准

对于同一摄像头拍摄的多张图像,可以一次性进行批量校准:

# batch 是一个图像张量列表,每个张量的形状为 [C, H, W]
result = model.calibrate(batch, shared_intrinsics=True)

4. 典型生态项目

GeoCalib 可以作为计算机视觉项目中的一部分,与其他开源项目结合使用,例如:

  • OpenPano:用于创建全景图像的开源项目。
  • DeepCalib:另一种基于深度学习的相机校准方法。
  • ParamNet:用于估计相机参数的神经网络。

通过结合这些项目,可以构建更为复杂和强大的计算机视觉应用。

GeoCalib GeoCalib: Learning Single-image Calibration with Geometric Optimization (ECCV 2024) GeoCalib 项目地址: https://gitcode.com/gh_mirrors/ge/GeoCalib

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

杭臣磊Sibley

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值