探索深度预测新维度:Transformer-Based Attention Networks for Continuous Pixel-Wise Prediction

探索深度预测新维度:Transformer-Based Attention Networks for Continuous Pixel-Wise Prediction

TransDepth 项目地址: https://gitcode.com/gh_mirrors/tr/TransDepth

在计算机视觉领域中,深度预测和表面法线估计一直是关键任务,这些任务对于自动驾驶、机器人导航、增强现实等应用至关重要。现在,我们很高兴向您推介一个全新的开源项目——基于Transformer的注意力网络,该模型在连续像素级预测上展现出卓越的能力。

项目介绍

这个开源项目是Transformer-Based Attention Networks for Continuous Pixel-Wise Prediction的PyTorch实现,由Guanglei Yang、Hao Tang等人在ICCV 2021会议上发表。它引入了Transformer架构到深度预测和表面法线估计中,以提高预测的精度和连续性。

技术分析

项目的核心是结合ResNet与Vision Transformer (ViT)的R50-ViT-B_16编码器。Transformer的自注意力机制允许模型全局地理解和处理输入信息,这使得在处理像素级连续预测时能更好地捕捉空间关系。

应用场景

  • 深度预测:可以用于自动驾驶汽车中的障碍物检测和距离估算,以及室内环境的理解。
  • 表面法线估计:在虚拟现实和游戏开发中,为场景添加更真实的光照效果,提升用户体验。
  • 三维重建:在建筑和考古领域,提供精确的3D模型构建。

项目特点

  1. 创新架构:将Transformer的注意力机制与卷积神经网络(CNN)相结合,改进了传统深度和表面法线预测方法。
  2. 预训练模型:提供了预训练模型R50-ViT-B_16,加快模型训练速度并改善性能。
  3. 数据集准备脚本:支持NYU Depth V2和KITTI数据集的快速下载和处理。
  4. 易于使用:通过简单的命令行参数即可进行训练和测试,同时还提供了预训练模型的下载脚本。
  5. 可视化结果:项目分享了所有任务的可视化结果,便于理解模型表现。

开始使用

要开始探索这个项目,首先确保安装了Python和所需依赖项,然后按照readme文件提供的步骤下载预训练模型、数据集,并运行训练和测试脚本。

pip install -r requirements.txt
CUDA_VISIBLE_DEVICES=0,1,2,3 python bts_main.py arguments_train_nyu.txt
CUDA_VISIBLE_DEVICES=0,1,2,3 python bts_main.py arguments_train_eigen.txt
# 进行测试
CUDA_VISIBLE_DEVICES=1 python bts_test.py arguments_test_nyu.txt
CUDA_VISIBLE_DEVICES=1 python bts_test.py arguments_test_eigen.txt

我们诚挚邀请您参与这个项目,无论您是研究人员还是开发者,都能在这里找到有价值的洞察和实践机会。如果您对此有兴趣或者有任何疑问,欢迎联系作者bdxtanghao@gmail.com。

立即尝试这个强大的工具,开启您的深度预测和表面法线估计之旅吧!

TransDepth 项目地址: https://gitcode.com/gh_mirrors/tr/TransDepth

### 基于 Transformer 的序列推荐系统 (TSR) 实现与概述 基于 Transformer 的序列推荐系统(Transformer-based Sequential Recommendation System, TSR)是一种利用自注意力机制来捕捉用户行为序列中长期依赖关系的方法。这种方法通过建模用户的动态兴趣,能够更有效地预测用户可能感兴趣的商品或服务。 #### 1. Transformer 架构的核心概念 Transformer 是一种由 Vaswani 等人在论文《Attention is All You Need》中提出的神经网络架构[^3]。它主要依靠自注意力机制(Self-Attention Mechanism),能够在处理长序列数据时捕获全局上下文信息。相比于传统的 RNN 或 LSTM 模型,Transformer 不仅能并行化训练过程,还能更好地学习远距离依赖关系。 在推荐系统的背景下,Transformer 被用来分析用户的历史交互记录,从而推断其未来的偏好。具体来说: - **输入表示**:用户的行为历史被编码为一系列嵌入向量 \( \{e_1, e_2, ..., e_n\} \),其中每个向量代表一项商品或者一次互动。 - **位置编码**:为了保留时间顺序信息,通常会加入绝对或相对的位置编码 \( PE_{pos} \)[^4]。 - **自注意力层**:该层允许模型关注整个序列中的重要部分,而不仅仅是最近的几个项目。 以下是 Transformer 推荐模型的一个简化版本实现示例: ```python import torch.nn as nn class TransformerLayer(nn.Module): def __init__(self, d_model=512, nhead=8, num_layers=6): super(TransformerLayer, self).__init__() encoder_layer = nn.TransformerEncoderLayer(d_model=d_model, nhead=nhead) self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=num_layers) def forward(self, src): output = self.transformer_encoder(src.permute(1, 0, 2)) return output[-1] class SequenceRecommendationModel(nn.Module): def __init__(self, vocab_size, embedding_dim=512, nhead=8, num_layers=6): super(SequenceRecommendationModel, self).__init__() self.embedding = nn.Embedding(vocab_size, embedding_dim) self.positional_encoding = PositionalEncoding(embedding_dim) self.transformer = TransformerLayer(d_model=embedding_dim, nhead=nhead, num_layers=num_layers) self.fc_out = nn.Linear(embedding_dim, vocab_size) def forward(self, input_seq): embedded = self.embedding(input_seq) encoded_input = self.positional_encoding(embedded) transformer_output = self.transformer(encoded_input) prediction_scores = self.fc_out(transformer_output) return prediction_scores ``` 上述代码定义了一个简单的基于 Transformer 的推荐模型框架,其中包括嵌入层、位置编码以及最终的全连接输出层用于生成评分矩阵。 #### 2. 多行为推荐中的应用 对于多行为场景下的推荐问题,可以扩展基础的 Transformer 结构以适应不同的行为类型。例如,在给定多种行为模式的情况下,可以通过引入额外的行为特征维度或将每种行为视为独立子任务的方式增强表达能力[^1]。此外,还可以借鉴图卷积网络的思想构建隐含的关系结构[^2],进一步提升性能表现。 #### 3. 总结 综上所述,基于 Transformer 的序列推荐技术凭借强大的上下文理解能力和灵活的设计空间成为当前研究热点之一。然而值得注意的是,实际部署过程中还需要考虑计算资源消耗等因素的影响。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

岑晔含Dora

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值