探索深度预测新维度:Transformer-Based Attention Networks for Continuous Pixel-Wise Prediction
TransDepth 项目地址: https://gitcode.com/gh_mirrors/tr/TransDepth
在计算机视觉领域中,深度预测和表面法线估计一直是关键任务,这些任务对于自动驾驶、机器人导航、增强现实等应用至关重要。现在,我们很高兴向您推介一个全新的开源项目——基于Transformer的注意力网络,该模型在连续像素级预测上展现出卓越的能力。
项目介绍
这个开源项目是Transformer-Based Attention Networks for Continuous Pixel-Wise Prediction的PyTorch实现,由Guanglei Yang、Hao Tang等人在ICCV 2021会议上发表。它引入了Transformer架构到深度预测和表面法线估计中,以提高预测的精度和连续性。
技术分析
项目的核心是结合ResNet与Vision Transformer (ViT)的R50-ViT-B_16编码器。Transformer的自注意力机制允许模型全局地理解和处理输入信息,这使得在处理像素级连续预测时能更好地捕捉空间关系。
应用场景
- 深度预测:可以用于自动驾驶汽车中的障碍物检测和距离估算,以及室内环境的理解。
- 表面法线估计:在虚拟现实和游戏开发中,为场景添加更真实的光照效果,提升用户体验。
- 三维重建:在建筑和考古领域,提供精确的3D模型构建。
项目特点
- 创新架构:将Transformer的注意力机制与卷积神经网络(CNN)相结合,改进了传统深度和表面法线预测方法。
- 预训练模型:提供了预训练模型R50-ViT-B_16,加快模型训练速度并改善性能。
- 数据集准备脚本:支持NYU Depth V2和KITTI数据集的快速下载和处理。
- 易于使用:通过简单的命令行参数即可进行训练和测试,同时还提供了预训练模型的下载脚本。
- 可视化结果:项目分享了所有任务的可视化结果,便于理解模型表现。
开始使用
要开始探索这个项目,首先确保安装了Python和所需依赖项,然后按照readme文件提供的步骤下载预训练模型、数据集,并运行训练和测试脚本。
pip install -r requirements.txt
CUDA_VISIBLE_DEVICES=0,1,2,3 python bts_main.py arguments_train_nyu.txt
CUDA_VISIBLE_DEVICES=0,1,2,3 python bts_main.py arguments_train_eigen.txt
# 进行测试
CUDA_VISIBLE_DEVICES=1 python bts_test.py arguments_test_nyu.txt
CUDA_VISIBLE_DEVICES=1 python bts_test.py arguments_test_eigen.txt
我们诚挚邀请您参与这个项目,无论您是研究人员还是开发者,都能在这里找到有价值的洞察和实践机会。如果您对此有兴趣或者有任何疑问,欢迎联系作者bdxtanghao@gmail.com。
立即尝试这个强大的工具,开启您的深度预测和表面法线估计之旅吧!
TransDepth 项目地址: https://gitcode.com/gh_mirrors/tr/TransDepth