推荐使用:CMIP6气候下尺度化工具

推荐使用:CMIP6气候下尺度化工具

去发现同类优质开源项目:https://gitcode.com/

在应对气候变化的挑战中,数据和科学起着至关重要的作用。这就是为什么我们向您推荐开源项目carbonplan/cmip6-downscaling,这是一个专门用于气候模型下尺度化的工具包,旨在将全球气候模型结果转化为更贴近地面实际情况的区域预测。

项目介绍

carbonplan/cmip6-downscaling项目提供了一个框架,可对最新的 Coupled Model Intercomparison Project Phase 6 (CMIP6) 数据进行气候下尺度处理。它不仅包含了实现这一过程所需的脚本和模型,还提供了一个交互式地图工具,以直观地展示处理结果。此项目的目标是提高气候信息的透明度和科学可靠性,助力制定有针对性的气候适应策略。

项目技术分析

该项目基于Python构建,可通过pip安装,方便快捷。其中的关键功能包括:

  1. 使用intake库访问大量的每日时序数据集。
  2. 提供了多种下尺度化方法,可以通过cmip6_downscaling.methods直接调用。
  3. 支持通过URL直接访问特定的Zarr存储数据,便于数据的读取和分析。

此外,代码遵循良好的编程实践,如使用pre-commit工具保证代码质量,并通过GitHub Actions持续集成确保构建的稳定性。

项目及技术应用场景

这个项目对于气候变化研究人员、政策制定者和数据分析者都极具价值。应用场景包括:

  1. 研究极端天气事件的趋势和频率。
  2. 分析特定地区的温度和降水变化,为农业、水资源管理和城市规划提供指导。
  3. 评估不同情景下的减排策略对本地气候的影响。

项目特点

  1. 开放源码与数据:所有代码均采用MIT许可证,部分数据遵循CC-BY-4.0许可证,鼓励分享与合作。
  2. 易用性:提供简单的Python API和Jupyter notebook示例,便于快速上手。
  3. 高质量数据:使用最新的CMIP6数据,覆盖广泛的地理范围和时间序列。
  4. 可视化探索:配套的在线地图工具使用户能够直观理解处理后的数据。

加入这个项目,一起利用先进的气候模型来应对气候变化带来的挑战吧!如有任何疑问或需要帮助,可以通过项目中的链接联系CarbonPlan团队,他们非常欢迎新用户的参与和贡献。

去发现同类优质开源项目:https://gitcode.com/

Use of NWAI-WG data   So far, NWAI-WG data have been used on a collaborative basis in publications (see the attached file). The major reasons are the data were not widely distributed. They were only used in our group and our collaborative networks. There were some cases with requests of the data made after people read Liu and Zou's (2012) paper. You have two options for using the data. Option 1: Collaboration with us. In this case, we will help you to describe the downscaling method and contribute to other parts of the paper such as comments/suggestions on the papers, if the fields are within our expertise. Option 2: Use of the data on your own. While option 1 for collaboration with us is welcome, option 2 is also highly encouraged, particularly, when the data are used for these research disciplines, rather than agricultural related. Thanks to Professor Yu who provides us with his group's web site (www.agrivy.com) as a media for distribution of the data.   Acknowledgment for option 1  “We acknowledge the modelling groups, the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and the WCRP’s Working Group on Coupled Modelling (WGCM) for their roles in making available the WCRP CMIP5 multi-model dataset. Support of this dataset is provided by the Office of Science, US Department of Energy. Dr. Ian Macadam of the University of New South Wales downloaded the raw GCM monthly data. ”   Acknowledgment for option 2  “We acknowledge the modelling groups, the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and the WCRP’s Working Group on Coupled Modelling (WGCM) for their roles in making available the WCRP CMIP5 multi-model dataset. Support of this dataset is provided by the Office of Science, US Department of Energy. Dr. Ian Macadam of the University of New South Wales downloaded the raw GCM monthly data. Dr. De Li Liu of the NSW Department of Primary Industries used NWAI-WG to downscale downscaled daily data. Also, thanks to AGRIVY (www.agrivy.com) provides us the data for this study.”
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

黎情卉Desired

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值