MoFlow 项目教程

MoFlow 项目教程

moflow 项目地址: https://gitcode.com/gh_mirrors/mof/moflow

1. 项目目录结构及介绍

MoFlow 项目的目录结构如下:

moflow/
├── data/
│   ├── data_preprocess.py
│   └── ...
├── mflow/
│   ├── train_model.py
│   ├── generate.py
│   └── ...
├── LICENSE
├── README.md
└── ...

目录结构介绍

  • data/: 该目录包含数据预处理相关的脚本,例如 data_preprocess.py,用于从 SMILES 字符串生成分子图。
  • mflow/: 该目录包含模型训练和生成的核心脚本,例如 train_model.pygenerate.py
  • LICENSE: 项目的许可证文件,采用 MIT 许可证。
  • README.md: 项目的说明文档,包含项目的简介、安装步骤和使用说明。

2. 项目的启动文件介绍

train_model.py

train_model.py 是 MoFlow 项目的主要启动文件之一,用于训练分子图生成模型。以下是该文件的主要功能:

  • 数据加载: 从指定数据集(如 QM9 或 zinc250k)加载数据。
  • 模型训练: 使用加载的数据训练 MoFlow 模型。
  • 参数配置: 支持通过命令行参数配置训练过程中的各种超参数,如批量大小、最大训练轮数、GPU 使用等。

generate.py

generate.py 是另一个主要的启动文件,用于生成分子图。以下是该文件的主要功能:

  • 模型加载: 从训练好的模型中加载权重。
  • 分子图生成: 支持从潜在空间采样生成新的分子图,或对现有分子图进行重建。
  • 实验模式: 支持多种实验模式,如随机生成、插值生成等。

3. 项目的配置文件介绍

MoFlow 项目没有显式的配置文件,但可以通过命令行参数在启动文件中进行配置。以下是一些常用的配置参数:

train_model.py 配置参数

  • --data_name: 指定训练数据集的名称,如 qm9zinc250k
  • --batch_size: 设置训练时的批量大小。
  • --max_epochs: 设置最大训练轮数。
  • --gpu: 指定使用的 GPU 设备编号。
  • --save_dir: 指定模型保存的目录。

generate.py 配置参数

  • --model_dir: 指定加载模型的目录。
  • --snapshot: 指定加载的模型快照文件。
  • --data_name: 指定生成分子图时使用的数据集名称。
  • --batch-size: 设置生成时的批量大小。
  • --reconstruct: 是否进行分子图重建。
  • --temperature: 设置生成时的温度参数。
  • --n_experiments: 设置实验次数。

通过这些配置参数,用户可以根据自己的需求灵活地调整模型的训练和生成过程。

moflow 项目地址: https://gitcode.com/gh_mirrors/mof/moflow

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

宋溪普Gale

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值