MoFlow 项目教程
moflow 项目地址: https://gitcode.com/gh_mirrors/mof/moflow
1. 项目目录结构及介绍
MoFlow 项目的目录结构如下:
moflow/
├── data/
│ ├── data_preprocess.py
│ └── ...
├── mflow/
│ ├── train_model.py
│ ├── generate.py
│ └── ...
├── LICENSE
├── README.md
└── ...
目录结构介绍
- data/: 该目录包含数据预处理相关的脚本,例如
data_preprocess.py
,用于从 SMILES 字符串生成分子图。 - mflow/: 该目录包含模型训练和生成的核心脚本,例如
train_model.py
和generate.py
。 - LICENSE: 项目的许可证文件,采用 MIT 许可证。
- README.md: 项目的说明文档,包含项目的简介、安装步骤和使用说明。
2. 项目的启动文件介绍
train_model.py
train_model.py
是 MoFlow 项目的主要启动文件之一,用于训练分子图生成模型。以下是该文件的主要功能:
- 数据加载: 从指定数据集(如 QM9 或 zinc250k)加载数据。
- 模型训练: 使用加载的数据训练 MoFlow 模型。
- 参数配置: 支持通过命令行参数配置训练过程中的各种超参数,如批量大小、最大训练轮数、GPU 使用等。
generate.py
generate.py
是另一个主要的启动文件,用于生成分子图。以下是该文件的主要功能:
- 模型加载: 从训练好的模型中加载权重。
- 分子图生成: 支持从潜在空间采样生成新的分子图,或对现有分子图进行重建。
- 实验模式: 支持多种实验模式,如随机生成、插值生成等。
3. 项目的配置文件介绍
MoFlow 项目没有显式的配置文件,但可以通过命令行参数在启动文件中进行配置。以下是一些常用的配置参数:
train_model.py
配置参数
--data_name
: 指定训练数据集的名称,如qm9
或zinc250k
。--batch_size
: 设置训练时的批量大小。--max_epochs
: 设置最大训练轮数。--gpu
: 指定使用的 GPU 设备编号。--save_dir
: 指定模型保存的目录。
generate.py
配置参数
--model_dir
: 指定加载模型的目录。--snapshot
: 指定加载的模型快照文件。--data_name
: 指定生成分子图时使用的数据集名称。--batch-size
: 设置生成时的批量大小。--reconstruct
: 是否进行分子图重建。--temperature
: 设置生成时的温度参数。--n_experiments
: 设置实验次数。
通过这些配置参数,用户可以根据自己的需求灵活地调整模型的训练和生成过程。