StarCoder 2 使用教程
项目地址:https://gitcode.com/gh_mirrors/st/starcoder2
项目介绍
StarCoder 2 是一个代码生成模型系列,包括 3B、7B 和 15B 参数模型,训练数据涵盖了 600 多种编程语言以及如 Wikipedia、Arxiv 和 GitHub 问题等自然语言文本。这些模型采用了 Grouped Query Attention 技术,具有 16,384 个令牌的上下文窗口,并使用 4,096 个令牌的滑动窗口注意力。3B 和 7B 模型在超过 3 万亿个令牌上进行了训练,而 15B 模型则在超过 4 万亿个令牌上进行了训练。
项目快速启动
安装依赖
首先,确保你已经安装了必要的依赖包。你可以通过以下命令安装:
pip install -r requirements.txt
启动训练
使用以下命令启动训练过程:
accelerate launch finetune.py \
--model_id "bigcode/starcoder2-3b" \
--dataset_name "bigcode/the-stack-smol" \
--subset "data/rust" \
--dataset_text_field "content" \
--split "train" \
--max_seq_length 1024 \
--max_steps 10000 \
--micro_batch_size 1 \
--gradient_accumulation_steps 8 \
--learning_rate 2e-5 \
--warmup_steps 20 \
--num_proc "$(nproc)"
应用案例和最佳实践
代码生成
StarCoder 2 可以用于自动生成代码,特别是在需要大量重复性编程任务时。例如,可以使用 StarCoder 2 生成特定编程语言的模板代码。
代码补全
在编写代码时,StarCoder 2 可以帮助开发者自动补全代码片段,提高编码效率。
代码审查
StarCoder 2 还可以用于代码审查,通过分析代码库中的代码风格和潜在错误,提供改进建议。
典型生态项目
Hugging Face Transformers
Hugging Face Transformers 是一个广泛使用的自然语言处理库,支持多种预训练模型,包括 StarCoder 2。
BigCode Evaluation Harness
BigCode Evaluation Harness 是一个用于评估代码大型语言模型(Code LLMs)的工具,可以用来评估 StarCoder 2 及其衍生模型的性能。
The Stack v2
The Stack v2 是一个包含多种编程语言和自然语言文本的数据集,用于训练 StarCoder 2 模型。
通过以上模块的介绍和实践,开发者可以快速上手并有效利用 StarCoder 2 进行代码生成和相关任务。
starcoder2 项目地址: https://gitcode.com/gh_mirrors/st/starcoder2