bwa-mem2 开源项目使用教程
bwa-mem2 The next version of bwa-mem 项目地址: https://gitcode.com/gh_mirrors/bw/bwa-mem2
1. 项目介绍
bwa-mem2
是 bwa-mem
算法的下一代版本,由 Heng Li 开发。bwa-mem2
在保持与 bwa-mem
输出一致的同时,提供了显著的性能提升,速度提升范围为 1.3 到 3.1 倍,具体取决于使用场景、数据集和运行机器。该项目由 Intel 的 Parallel Computing Lab 的 Vasimuddin Md 和 Sanchit Misra 主要开发。bwa-mem2
采用 MIT 许可证发布。
2. 项目快速启动
2.1 使用预编译二进制文件
推荐使用预编译的二进制文件进行快速启动。以下是使用预编译二进制文件的步骤:
# 下载并解压预编译二进制文件
curl -L https://github.com/bwa-mem2/bwa-mem2/releases/download/v2.2.1/bwa-mem2-2.2.1_x64-linux.tar.bz2 \
| tar jxf -
# 进入解压后的目录
cd bwa-mem2-2.2.1_x64-linux
# 创建索引
./bwa-mem2 index ref.fa
# 进行比对
./bwa-mem2 mem ref.fa read1.fq read2.fq > out.sam
2.2 从源码编译
对于高级用户,可以选择从源码编译 bwa-mem2
。以下是编译步骤:
# 克隆仓库
git clone --recursive https://github.com/bwa-mem2/bwa-mem2
cd bwa-mem2
# 初始化并更新子模块(如果之前没有使用 --recursive 选项)
git submodule init
git submodule update
# 编译
make
# 运行
./bwa-mem2 index ref.fa
./bwa-mem2 mem ref.fa read1.fq read2.fq > out.sam
3. 应用案例和最佳实践
3.1 数据集准备
在进行比对之前,需要准备好参考基因组和测序数据。以下是数据准备步骤:
# 下载参考基因组
wget https://example.com/human_g1k_v37.fasta
# 下载测序数据
fastq-dump --split-files SRR7733443
3.2 比对步骤
使用 bwa-mem2
进行比对的步骤如下:
# 创建索引
./bwa-mem2 index human_g1k_v37.fasta
# 进行比对
./bwa-mem2 mem -t 56 human_g1k_v37.fasta SRR7733443_1.fastq SRR7733443_2.fastq > d2_align.sam
3.3 最佳实践
- 多线程使用:使用
-t
参数指定线程数,以充分利用多核处理器。 - 内存管理:确保系统有足够的内存来处理索引和比对任务。
- 预编译二进制文件:推荐使用预编译的二进制文件,以获得最佳性能。
4. 典型生态项目
4.1 bwa-mem2-lisa
bwa-mem2-lisa
是 bwa-mem2
的一个加速版本,通过应用 Learned-Indexes 技术加速了种子阶段。该版本在 bwa-mem2-lisa
分支中提供。
4.2 bwa-mem2-ert
bwa-mem2-ert
是另一个加速版本,通过使用 Enumerated Radix Trees 技术加速了 bwa-mem2
。该版本在 ert
分支中提供。
4.3 相关工具
- SAMtools:用于处理和分析 SAM/BAM 文件的工具。
- GATK:用于基因组分析的工具包,常与
bwa-mem2
结合使用。
通过以上模块,您可以快速了解并开始使用 bwa-mem2
项目。
bwa-mem2 The next version of bwa-mem 项目地址: https://gitcode.com/gh_mirrors/bw/bwa-mem2