K-Lane 开源项目使用教程

K-Lane 开源项目使用教程

K-LaneThe World's First Large Scale Lidar Lane Detection Dataset and Benchmark项目地址:https://gitcode.com/gh_mirrors/kl/K-Lane

1. 项目的目录结构及介绍

K-Lane 项目的目录结构如下:

K-Lane/
├── annotation/
│   └── src/
├── baseline/
├── configs/
├── docs/
├── LICENSE
├── main_vis.py
├── readme.md
├── requirements.txt
├── train_gpu_0.py
└── validate_gpu_0.py

目录介绍

  • annotation/: 包含用于车道标注的工具源代码。
  • baseline/: 包含项目的基准配置和代码。
  • configs/: 包含项目的配置文件。
  • docs/: 包含项目的文档文件。
  • LICENSE: 项目的许可证文件。
  • main_vis.py: 项目的主要可视化启动文件。
  • readme.md: 项目的介绍和使用说明。
  • requirements.txt: 项目依赖的Python包列表。
  • train_gpu_0.py: 用于GPU训练的启动文件。
  • validate_gpu_0.py: 用于GPU验证的启动文件。

2. 项目的启动文件介绍

main_vis.py

main_vis.py 是项目的主要可视化启动文件,用于展示车道检测结果。使用方法如下:

python main_vis.py

train_gpu_0.py

train_gpu_0.py 是用于GPU训练的启动文件,用于训练车道检测模型。使用方法如下:

python train_gpu_0.py

validate_gpu_0.py

validate_gpu_0.py 是用于GPU验证的启动文件,用于验证训练好的车道检测模型。使用方法如下:

python validate_gpu_0.py

3. 项目的配置文件介绍

configs/

configs/ 目录包含项目的配置文件,这些文件定义了模型的参数、数据集路径和其他重要设置。主要的配置文件可能包括:

  • config.yaml: 主配置文件,包含模型和训练参数。
  • dataset_config.yaml: 数据集配置文件,包含数据集路径和预处理参数。

配置文件示例

# config.yaml
model:
  name: "K-Lane"
  batch_size: 32
  learning_rate: 0.001

dataset:
  path: "path/to/dataset"
  preprocessing:
    resize: [640, 480]

通过修改这些配置文件,可以调整模型的训练和验证行为。


以上是 K-Lane 开源项目的使用教程,希望对您有所帮助。

K-LaneThe World's First Large Scale Lidar Lane Detection Dataset and Benchmark项目地址:https://gitcode.com/gh_mirrors/kl/K-Lane

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

束静研Kody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值