K-Lane 开源项目使用教程
1. 项目的目录结构及介绍
K-Lane 项目的目录结构如下:
K-Lane/
├── annotation/
│ └── src/
├── baseline/
├── configs/
├── docs/
├── LICENSE
├── main_vis.py
├── readme.md
├── requirements.txt
├── train_gpu_0.py
└── validate_gpu_0.py
目录介绍
annotation/
: 包含用于车道标注的工具源代码。baseline/
: 包含项目的基准配置和代码。configs/
: 包含项目的配置文件。docs/
: 包含项目的文档文件。LICENSE
: 项目的许可证文件。main_vis.py
: 项目的主要可视化启动文件。readme.md
: 项目的介绍和使用说明。requirements.txt
: 项目依赖的Python包列表。train_gpu_0.py
: 用于GPU训练的启动文件。validate_gpu_0.py
: 用于GPU验证的启动文件。
2. 项目的启动文件介绍
main_vis.py
main_vis.py
是项目的主要可视化启动文件,用于展示车道检测结果。使用方法如下:
python main_vis.py
train_gpu_0.py
train_gpu_0.py
是用于GPU训练的启动文件,用于训练车道检测模型。使用方法如下:
python train_gpu_0.py
validate_gpu_0.py
validate_gpu_0.py
是用于GPU验证的启动文件,用于验证训练好的车道检测模型。使用方法如下:
python validate_gpu_0.py
3. 项目的配置文件介绍
configs/
configs/
目录包含项目的配置文件,这些文件定义了模型的参数、数据集路径和其他重要设置。主要的配置文件可能包括:
config.yaml
: 主配置文件,包含模型和训练参数。dataset_config.yaml
: 数据集配置文件,包含数据集路径和预处理参数。
配置文件示例
# config.yaml
model:
name: "K-Lane"
batch_size: 32
learning_rate: 0.001
dataset:
path: "path/to/dataset"
preprocessing:
resize: [640, 480]
通过修改这些配置文件,可以调整模型的训练和验证行为。
以上是 K-Lane 开源项目的使用教程,希望对您有所帮助。